
Scaling the Linux VFS

Nick Piggin
SuSE Labs, Novell Inc.

September 19, 2009

0-0

Outline

I will cover the following areas:

• Introduce each of the scalability bottlenecks

• Describe common operations they protect

• Outline my approach to improving synchronisation

• Report progress, results, problems, future work

1

Goal

• Improve scalability of common vfs operations;

• with minimal impact on single threaded performance;

• and without an overly complex design.

• Single-sb scalability.

2

VFS overview

• Virtual FileSystem, or Virtual Filesystem Switch

• Entry point for filesystem operations (eg. syscalls)

• Delegates operations to appropriate mounted filesystems

• Caches things to reduce or eliminate fs responsibility

• Provides a library of functions to be used by fs

3

The contenders

• files lock

• vfsmount lock

• mnt count

• dcache lock

• inode lock

• And several other write-heavy shared data

4

files lock

• Protects modification and walking a per-sb list of open files

• Also protects a per-tty list of files open for ttys

• open(2), close(2) syscalls add and delete file from list

• remount,ro walks the list to check for RW open files

5

files lock ideas

• We can move tty usage into its own private lock

• per-sb locks would help, but I want scalability within a single fs

• Fastpath is updates, slowpath is reading – RCU won’t work.

• Modifying a single object (the list head) cannot be scalable:

• must reduce number of modifications (eg. batching),

• or split modifications to multiple objects.

• Slowpath reading the list is very rarely used!

6

files lock my implementation

• This suggests per-CPU lists, protected by per-CPU locks.

• Slowpath can take all locks and walk all lists

• Pros: “perfect” scalability for file open/close, no extra atomics

• Cons: larger superblock struct, slow list walking on huge

systems

• Cons: potential cross-CPU file removal

7

vfsmount lock

• Largely, protects reading and writing mount hash

• Lookup vfsmount hash for given mount point

• Publishing changes to mount hierarchy to the mount hash

• Mounting, unmounting filesystems modify the data

• Path walking across filesystem mounts reads the data

8

vfsmount lock ideas

• Fastpath are lookups, slowpath updates

• RCU could help here, but there is a complex issue:

• Need to prevent umounts for a period after lookup (while we

have a ref)

• Usual implementations have per-object lock, but per-sb

scalability

• Umount could synchronize rcu(), this can sleep and be

very slow

9

vfsmount lock my implementation

• Per-cpu locks again, this time optimised for reading

• “brlock”, readers take per-cpu lock, writers take all locks

• Pros: “perfect” scalability for mount lookup, no extra atomics

• Cons: slower umounts

10

mnt count

• A refcount on vfsmount, not quite a simple refcount

• Used importantly in open(2), close(2), and path walk over

mounts

11

mnt count my implementation

• Fastpath is get/put.

• A “put” must also check count==0, makes per-CPU counter hard

• However count==0 is always false when vfsmount is attached

• So only need to check for 0 when not mounted (rare case)

• Then per-CPU counters can be used, with per-CPU

vfsmount lock

• Pros: “perfect” scalability for vfsmount refcounting

• Cons: larger vfsmount struct

12

dcache lock

• Most dcache operations require dcache lock.

• except name lookup, converted to RCU in 2.5

• dput last reference (except for “simple” filesystems)

• any fs namespace modification (create, delete, rename)

• any uncached namespace population (uncached path walks)

• dcache LRU scanning and reclaim

• socket open/close operations

13

dcache lock is hard

• Code and semantics can be complex

• It is exported to filesystems and held over methods

• Hard to know what it protects in each instance it is taken

• Lots of places to audit and check

• Hard to verify result is correct

• This is why I need vfs experts and fs developers

14

dcache lock approach

• identify what the lock protects in each place it is called

• implement new locking scheme to protect usage classes

• remove dcache lock

• improve scalability of (now simplified) classes of locks

15

dcache locking classes

• dcache hash

• dcache LRU list

• per-inode dentry list

• dentry children list

• dentry fields (d count, d flags, list membership)

• dentry refcount

• reverse path traversal

• dentry counters

16

dcache my implementation outline

• All dentry fields including list mebership protected by d lock

• children list protected by d lock (this is a dentry field too)

• dcache hash, LRU list, inode dentry list protected by new locks

• Lock ordering can be difficult, trylock helps

• Walking up multiple parents requires RCU and rename blocking.

Hard!

17

dcache locking difficulties 1

• “Locking classes” not independent.

1: spin_lock(&dcache_lock);
2: list_add(&dentry->d_lru, &dentry_lru);
3: hlist_add(&dentry->d_hash, &hash_list);
4: spin_unlock(&dcache_lock);

is not the same as
1: spin_lock(&dcache_lru_lock);
2: list_add(&dentry->d_lru, &dentry_lru);
3: spin_unlock(&dcache_lru_lock);
4: spin_lock(&dcache_hash_lock);
5: hlist_add(&dentry->d_hash, &hash_list);
6: spin_unlock(&dcache_hash_lock);

Have to consider each dcache lock site carefully, in context.

d lock does help a lot.

18

dcache locking difficulties 2

• EXPORT SY MBOL(dcache lock);

• − > d delete

Filesystems may use dcache lock in non-trivial ways for protecting

their own data structures and locking parts of dcache code from

executing. Autofs4 seems to do this, for example.

19

dcache locking difficulties 3

• Reverse path walking (from child to parent)

We have dcache parent− >child lock ordering. Walking the other

way is tough. dcache lock would freeze the state of the entire

dcache tree. I use RCU to prevent parent from being freed while

dropping the child’s lock to take the parent lock. Rename lock or

seqlock/retry logic can prevent renames causing our walk to

become incorrect.

20

dcache scaling in my implementation

• dcache hash lock made per-bucket

• per-inode dentry list made per-inode

• dcache stats counters made per-CPU

• dcache LRU list is last global dcache lock, could be made

per-zone

• pseudo filesystems don’t attach dentries to global parent

21

dcache implementation complexity

• Lock ordering can be difficult

• Lack of a way to globally freeze the tree

• Otherwise in some ways it is actually simpler

22

inode lock

• Most inode operations require inode lock.

• Except dentry− >inode lookup and refcounting

• Inode lookup, cached and uncached, inode creation and

destruction

• Including socket, other pseudo-sb operations

• Inode dirtying, writeback, syncing

• icache LRU walking and reclaim

• socket open/close operations

23

inode lock approach

• Same as approach for dcache

24

icache locking classes

• inode hash

• inode LRU list

• inode superblock inodes list

• inode dirty list

• inode fields (i state, i count, list membership)

• iunique

• last ino

• inode counters

25

icache implementation outline

• Largely similar to dcache

• All inode fields including list membership protected by i lock

• icache hash, superblock list, LRU+dirty lists protected by new

locks

• last ino, iunique given private locks

• Not simple, but easier than dcache! (less complex and less

code)

26

icache scaling my implementation

• inode made RCU freed to simplify lock orderings and reduce

complexity

• icache hash lock made per-bucket, lockless lookup

• icache LRU list made lazy like dcache, could be made per-zone

• per-cpu, per-sb inode lists

• per-cpu inode counter

• per-cpu inode number allocator (Eric Dumazet)

• inode and dirty list remains problematic.

27

Current progress

• Very few fundamentally global cachelines remain

• I’m using tmpfs, ramfs, ext2/3, nfs, nfsd, autofs4.

• Most others require some work

• Particularly dcache changes not audited in all filesystems

• Still stamping out bugs, doing some basic performance testing

• Still working to improve single threaded performance

28

Performance results

• The abstract was a lie!

• open(2)/close(2) in seperate subdirs seems perfectly scalable

• creat(2)/unlink(2) seems perfectly scalable

• Path lookup less scalable with common cwd, due to d lock in

refcount

• Single-threaded performance is worse in some cases, better in

others

29

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 1 2 3 4 5 6 7 8

T
ot

al
 ti

m
e

(lo
w

er
 is

 b
et

te
r)

CPUs used

close(open("path")) on independent files, same cwd

standard
vfs-scale

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 1 2 3 4 5 6 7 8

T
ot

al
 ti

m
e

(lo
w

er
 is

 b
et

te
r)

CPUs used

unlink(creat("path")) on independent files, same cwd

standard
vfs-scale

30

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1 2 3 4 5 6 7 8

T
ot

al
 ti

m
e

(lo
w

er
 is

 b
et

te
r)

CPUs used

close(open("path")) on independent files, different cwd

standard
vfs-scale

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 1 2 3 4 5 6 7 8

T
ot

al
 ti

m
e

(lo
w

er
 is

 b
et

te
r)

CPUs used

unlink(creat("path")) on independent files, different cwd

standard
vfs-scale

31

 0

 0.5

 1

 1.5

 2

 0 0.1 0.2 0.3 0.4 0.5 0.6

to
ta

l t
im

e,
 lo

w
er

 is
 b

et
te

r
Multi-process close lots of sockets

plain
vfs-scale

32

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6

M
ax

 jo
bs

/m
in

, h
ig

he
r

is
 b

et
te

r
osdl reaim 7 Peter Chubb workload

plain
vfs-scale

33

Future work

• Improve scalability (eg. LRU lists, inode dirty list)

• Look at single threaded performance, code simplifications

Interesting future possibilities:

• Path walk without taking d lock

• Paves the way for NUMA aware dcache/icache reclaim

• Can expand the choice of data structure (simplicity, RCU

requirement)

34

How can you help

• Review code

• Audit filesystems

• Suggest alternative approaches to scalability

• Implement improvements, “future work”, etc

• Test your workload

35

Conclusion

VFS is hard. That’s the only thing I can conclude so far.

Thank you

36

