Scaling the Linux VFS

Nick Piggin
SuSE Labs, Novell Inc.

September 19, 2009

0-0



Outline
| will cover the following areas:
e Introduce each of the scalability bottlenecks
e Describe common operations they protect
e Qutline my approach to improving synchronisation

e Report progress, results, problems, future work



Goal
e Improve scalability of common vfs operations;
e with minimal impact on single threaded performance;
e and without an overly complex design.

e Single-sb scalability.



VFS overview
Virtual FileSystem, or Virtual Filesystem Switch
Entry point for filesystem operations (eg. syscalls)
Delegates operations to appropriate mounted filesystems
Caches things to reduce or eliminate fs responsibility

Provides a library of functions to be used by fs



The contenders
files_lock
v f smount_lock
mnt_count
dcache_lock
1node_lock

And several other write-heavy shared data



files_lock

Protects modification and walking a per-sb list of open files
Also protects a per-tty list of files open for ttys
open(2), close(2) syscalls add and delete file from list

remount,ro walks the list to check for RW open files



files_lock ideas
We can move tty usage into its own private lock
per-sb locks would help, but | want scalability within a single fs
Fastpath is updates, slowpath is reading — RCU won’t work.
Modifying a single object (the list head) cannot be scalable:
must reduce number of modifications (eg. batching),
or split modifications to multiple objects.

Slowpath reading the list is very rarely used!



files_lock my implementation
This suggests per-CPU lists, protected by per-CPU locks.
Slowpath can take all locks and walk all lists
Pros: “perfect” scalability for file open/close, no extra atomics

Cons: larger superblock struct, slow list walking on huge

systems

Cons: potential cross-CPU file removal



v f smount_lock
Largely, protects reading and writing mount hash
Lookup vismount hash for given mount point
Publishing changes to mount hierarchy to the mount hash
Mounting, unmounting filesystems modify the data

Path walking across filesystem mounts reads the data



v f smount_lock ideas
Fastpath are lookups, slowpath updates
RCU could help here, but there is a complex issue:

Need to prevent umounts for a period after lookup (while we

have a ref)

Usual implementations have per-object lock, but per-sb

scalability

Umount could synchronize_rcu(), this can sleep and be

very slow



v f smount_lock my implementation
Per-cpu locks again, this time optimised for reading
“orlock”, readers take per-cpu lock, writers take all locks

Pros: “perfect” scalability for mount lookup, no extra atomics

Cons: slower umounts

10



mnt_count
e A refcount on vismount, not quite a simple refcount

e Used importantly in open(2), close(2), and path walk over

mounts

11



mnt_count my implementation
Fastpath is get/put.
A “put” must also check count==0, makes per-CPU counter hard
However count==0 is always false when vfsmount is attached
So only need to check for 0 when not mounted (rare case)

Then per-CPU counters can be used, with per-CPU

v fsmount_lock
Pros: “perfect” scalability for vismount refcounting

Cons: larger vismount struct

12



dcache_lock

Most dcache operations require dcache_lock.

except name lookup, converted to RCU in 2.5

dput last reference (except for “simple” filesystems)

any fs namespace modification (create, delete, rename)

any uncached namespace population (uncached path walks)
dcache LRU scanning and reclaim

socket open/close operations

13



dcache_lock is hard
Code and semantics can be complex
It is exported to filesystems and held over methods
Hard to know what it protects in each instance it is taken
Lots of places to audit and check
Hard to verify result is correct

This is why | need vis experts and fs developers

14



dcache_lock approach
identify what the lock protects in each place it is called
iImplement new locking scheme to protect usage classes
remove dcache_lock

improve scalability of (now simplified) classes of locks

15



dcache locking classes
dcache hash
dcache LRU list
per-inode dentry list
dentry children list
dentry fields (d_count, d_flags, list membership)
dentry refcount
reverse path traversal

dentry counters

16



All dentry fields including list mebership protected by d_lock
children list protected by d_lock (this is a dentry field too)

dcache hash, LRU list, inode dentry list protected by new locks

dcache my implementation outline

Lock ordering can be difficult, trylock helps

Walking up multiple parents requires RCU and rename blocking.

Hard!

17



dcache locking difficulties 1

e “Locking classes” not independent.

1: spin_lock(&lcache | ock);

2. list_add(&dentry->d Iru, &dentry lru);
3. hlist _add(&dentry->d hash, &hash |ist);
4: spi n_unl ock( &Jcache | ock);

IS not the same as

spi n_| ock(&dcache I ru_| ock);

|1 st _add(&dentry->d |lru, &dentry |ru);
spi n_unl ock( &dcache | ru_| ock);

spi n_|l ock(&dcache hash | ock);

hlist add(&dlentry->d hash, &hash |ist);
spi n_unl ock( &lcache hash | ock);

QTR WNHE

Have to consider each dcache_lock site carefully, in context.
d_lock does help a lot.

18



dcache locking difficulties 2
e FXPORT.SY M BOL(dcache_lock);
o — > d_delete

Filesystems may use dcache_lock in non-trivial ways for protecting
their own data structures and locking parts of dcache code from

executing. Autofs4 seems to do this, for example.

19



dcache locking difficulties 3
e Reverse path walking (from child to parent)

We have dcache parent— >child lock ordering. Walking the other
way is tough. dcache_lock would freeze the state of the entire
dcache tree. | use RCU to prevent parent from being freed while
dropping the child’s lock to take the parent lock. Rename lock or
seqlock/retry logic can prevent renames causing our walk to

become incorrect.

20



dcache scaling in my implementation
dcache hash lock made per-bucket
per-inode dentry list made per-inode
dcache stats counters made per-CPU

dcache LRU list is last global dcache_lock, could be made

per-zone

pseudo filesystems don't attach dentries to global parent

21



dcache implementation complexity
e Lock ordering can be difficult
e Lack of a way to globally freeze the tree

e Otherwise in some ways it is actually simpler

22



1node_lock
Most inode operations require tnode_lock.
Except dentry— >inode lookup and refcounting

Inode lookup, cached and uncached, inode creation and

destruction

Including socket, other pseudo-sb operations
Inode dirtying, writeback, syncing

icache LRU walking and reclaim

socket open/close operations

23



1node_lock approach

e Same as approach for dcache

24



icache locking classes
iInode hash
inode LRU list
inode superblock inodes list
inode dirty list
inode fields (¢z_state, 1_count, list membership)
ilunique
last_ino

inode counters

25



icache implementation outline
e Largely similar to dcache
e All inode fields including list membership protected by ¢_{ock

® icache hash, superblock list, LRU+dirty lists protected by new

locks
e [ast_ino, tunique given private locks

e Not simple, but easier than dcache! (less complex and less

code)

26



icache scaling my implementation

inode made RCU freed to simplify lock orderings and reduce

complexity

icache hash lock made per-bucket, lockless lookup

icache LRU list made lazy like dcache, could be made per-zone
per-cpu, per-sb inode lists

per-cpu inode counter

per-cpu inode number allocator (Eric Dumazet)

iInode and dirty list remains problematic.

27



Current progress
Very few fundamentally global cachelines remain
I’'m using tmpfs, ramfs, ext2/3, nfs, nfsd, autofs4.
Most others require some work
Particularly dcache changes not audited in all filesystems
Still stamping out bugs, doing some basic performance testing

Still working to improve single threaded performance

28



Performance results
The abstract was a lie!
open(2)/close(2) in seperate subdirs seems perfectly scalable
creat(2)/unlink(2) seems perfectly scalable

Path lookup less scalable with common cwd, due to d_lock in

refcount

Single-threaded performance is worse in some cases, better in

others

29



Total time (lower is better)

Total time (lower is better)

3e+07

2.5e+07

2e+07

1.5e+07

1le+07

5e+06

8e+06

close(open("path™)) on independent files, same cwd

st:';mdard
vfs-scale
=
2 3 4 5 6 7
CPUs used

unlink(creat("path™)) on independent files, same cwd

7e+06

6e+06

5e+06

4e+06

3e+06

2e+06

1e+06

s'tandard
vfs-scale

CPUs used




Total time (lower is better)

Total time (lower is better)

1.6e+07

close(open("path™)) on independent files, different cwd

1.4e+07
1.2e+07
le+07
8e+06
6e+06
4e+06

2e+06 )

T T

st:';mdard
vfs-scale

0

4.5e+06

2 3 4 5 6 7
CPUs used

unlink(creat("path")) on independent files, different cwd

4e+06
3.5e+06
3e+06
2.5e+06
2e+06
1.5e+06
1le+06

500000 |

0

sténdard
vfs-scale

CPUs used




total time, lower is better

1.5

Multi-process close lots of sockets

32

L]
plain m—
vis-scale mmam




Max jobs/min, higher is better

3e+06

2.5e+06

2e+06

1.5e+06

1e+06

500000

osdl reaim 7 Peter Chubb workload

33




Future work
e |Improve scalability (eg. LRU lists, inode dirty list)
e Look at single threaded performance, code simplifications
Interesting future possibilities:
e Path walk without taking d_lock
e Paves the way for NUMA aware dcache/icache reclaim

e Can expand the choice of data structure (simplicity, RCU

requirement)

34



Review code

Audit filesystems

Suggest alternative approaches to scalability

Implement improvements, “future work”, etc

Test your workload

How can you help

35



Conclusion

VES is hard. That’s the only thing | can conclude so far.

Thank you

36



