Introduction to Linux
lopment

Kernel Deve

Luis R. Rodriguez <mcgrof@gmail.com>

Doc last updated:

June 17, 2008

Goal of presentation:

Bring people with

no experience into the realm of

Linux kernel development and its community.

Towards the enc
to submit a patc
next release of t

you will be expected to be ready
N upstream for inclusion on the

ne stock kernel. ubuntu

mailto:mcgrof@gmail.com

History, license, politics

and chain of command

« Early history — the GNU Project missing link

« Kernel: C

» Userspace: C, C++(xconfig, QT), perl, python

« Covered under GPL License v2

 Non GPL-compatible drivers cannot go upstream

» Support helpful vendors, ignore those who ignore us... or reverse
engineer

Chain of command example:

Wireless driver maintainer - Happy Hacker, Jr.
Wireless networking maintainer -» John W. Linville
Networking device driver maintainer —» David Miller
Linux development kernel maintainer — Linus Torvalds

2.6-Development - Linus Torvalds) || 2.6-Stable - Andrew Morton
vbuntu

Why Linux? FOSS, new freedom

and technology enlightenment

Free Software:

* Freedom (yes, a “freedom”) to go or remain public (GPL) or private (BSD)
« Stays within the community, forever

» Available to less fortunate, to the masses, “free as in free beer”
 Freedom to redistribute

Open Source:

« Potential: Work of the masses, not the work of a small army

* Public scrutiny: destroys childish and narcissistic “security by obscurity”
philosophy, the community knows better now

« Superior: Yields enduring, long lasting, reliable technology

Conclusion: obvious benefits to FOSS, people are just used to and keep choosing
“proprietary software” despite the incredible benefits of FOSS. Will it catch on to the
masses ? ... or will the masses catch on to it? GNU/Xorg/GNOME/KDE/Linux, the
community operating system needs public commitment, slowly private sector is
accepting it. Last few milestones....

ubuntu

Linux development

metrics - 2.6.21

‘New release every 2 %2 months
« 2.89 changes per hour
« 8.2 million lines of code
«2000 lines added every day
2800 lines modified every day
«24x7!

ubuntu

Hello world Linux module

hello world.c

#include <linux/module.h>
MODULE_AUTHOR ("Luis R. Rodriguez");
MODULE LICENSE ("GPL") ;
static int hello init (void)
{
printk ("I am a module, cheers!\n");
return 0;
}
static void goodbye_exit (void)
{
printk ("Goodbye cruel world!\n");
}
module 1nit (hello init);
module_exit (goodbye_exit);

ubuntu

Hello world Makefile

Command line:
make -C /lib/modules/ uname -r /build/ M="pwd"
Works with minimal Makefile:

obj-m += hello_world.o -C <directory> change directory

Or M=<directory> build external module

Decent module Makefile:

obj-m += hello_world.o
all:

make -C /lib/modules/$(shell uname -r)/build/ M=$(PWD) modules
clean:

make -C /lib/modules/$(shell uname -r)/build/ M=$(PWD) clean
clean-files := Module.symvers

ubuntu

Building hello world

$ uname -r

2.6.22-14-generic

$ pwd
/home/mcgrof/devel/modules/hello_world
$Is

hello_world.c Makefile

$ make

make -C /lib/modules/2.6.22-14-generic/build/ M=/home/mcgrof/devel/modules/hello_world modules
make[1]: Entering directory "/usr/src/linux-headers-2.6.22-14-generic'

CC [M] /home/mcgrof/devel/modules/hello_world/hello_world.o

Building modules, stage 2.

MODPOST

CC /home/mcgrof/devel/modules/hello_world/hello_world.mod.o

LD [M] /home/mcgrof/devel/modules/hello_world/hello_world.ko
make[1l]: Leaving directory "/usr/src/linux-headers-2.6.22-14-generic'

ubuntu

dmesg, insmod, rmmod

$ sudo dmesg -c > /dev/null kiogcti() --> sys_syslog()
$ sudo insmod hello world.ko sys_init module()

$ sudo dmesg -c sys_syslog()

| am a module, cheers!

$ sudo rmmod hello_world sys_delete_module()

$ sudo dmesg -C sys_syslog()

Goodbye cruel world!

ubuntu

Hello world -Huh???

What the heck just happened?

ubuntu

Linux Kernel build process ."\
®

The kernel build process has five parts:

« Makefile

« .config (Kconfigs read in for options)
e arch/$(ARCH)/Makefile
 scripts/Makefile.*

e Kbuild Makefiles

ubuntu

Knowledge requirements

Users:
- Mom & Dad: GUI interfaces to upgrade, dpkg, rpm
- College kids: make menuconfig, make, make install,

update-grub

Normal Developers:
- Kconfig, Makefiles, source code

Architecture Developers:
- Kconfig, Makefiles, source code, assembly, Kbuild hacks

Kbuild Developers:
- Kconfig, Makefiles, Kbuild hacks, gcc compatibility

ubuntu

Linux Kernel Top Makefile

Top Makefile:

The top Makefile is responsible for
producing vmlinux and modules. This file
s updated on every kernel release but
usually only for versioning:

VERSTION = 2
PATCHLEVEL = 6
SUBLEVEL = 22
EXTRAVERSION = .9

NAME = Holy Dancing Manatees, Batman!
vbuntu

Kernel Configuration

The .config file: (use menuconfig)

config - Update current config utilising a line-oriented program
menuconfig - Update current config utilising a menu based program
xconfig - Update current config utilising a QT based front-end
gconfig - Update current config utilising a GTK based front-end
oldconfig - Update current config utilising a provided .config as base
randconfig - New config with random answer to all options

defconfig - New config with default answer to all options

allmodconfig - New config selecting modules when possible
allyesconfig - New config where all options are accepted with yes
allnoconfig - New config where all options are answered with no

ubuntu

.config and Kconfig

drivers/net/wireless/Kconfig
config IPW2200

tristate "Intel PRO/Wireless 2200BG and 2915ABG Network Connection"
depends on NET_RADIO && PCI

select FW_LOADER

select IEEE80211

---help---

A driver for the Intel PRO/Wireless 2200BG and 2915ABG
Network Connection adapters.

See <file:Documentation/networking/README.ipw2200> for
information on the capabilities currently enabled in this
driver and for tips for debugging issues and problems.

—— EC -

Yields
<M> Intel PRO/Wireless 2200BG and 2915ABG Network Connection

ubuntu

arch/$(ARCH)/Makefile

arch/$(ARCH)/Makefile

An arch Makefile cooperates with the top Makefile to define variables
which specify how to build the vmlinux file. Note that there is no
corresponding arch-specific section for modules; the module-building
machinery is all architecture-independent.

head-y, init-y, core-y, libs-y, drivers-y, net-y

$(head-y) list objects to be linked first in vmlinux.

$(libs-y) list directories where a lib.a archive can be located.

The rest list directories where a built-in.o object file can be located.
$(init-y) objects will be located after $(head-y).

Then the rest follows in this order:
$(core-y), $(libs-y), $(drivers-y) and $(net-y).

ubuntu

scripts/Makefile.*, scripts/ ."\
®

scripts/ directory contains userspace and build time utilities

* bin2c - bin2c < binary --> yields header file to regenerate binary
» Lindent - calls indent with kernel specific parameters

scripts/kconfig/Makefile

make xconfig

scripts/Makefile
PHONY += oldconfig xconfig gconfig menuconfig config silentoldconfig update-po-config

xconfig: $(obj)/gconf
$< arch/$(ARCH)/Kconfg

scripts/Makefile.*

scripts/Makefile.modpost
<module>.mod
<module>.mod.c
<module.ko>

ubuntu

Kbuild Makefiles

Where you will start off

drivers/net/wireless/Makefile
obj-$(CONFIG IPW2200) += ipw2200.0

drivers/net/Makefile
obj-$(CONFIG_NET RADIO) += wireless/

drivers/Makefile
obj-y += base/ block/ misc/ mfd/ net/ media/

ubuntu

Coding Style 101

Part |

Documentation/CodingStyle
Tab 8 characters
Columns 80 lines (ehh)

int fun(int a)

{
int result = 0; « Functions should fit two ISO/ANSI screens (80x24)
char *buffer = kmalloc(SIZE); e Don't use typdefs
if (buffer == NULL) « Wrong: ThisVariablelsATemporaryCounter, cntusr()
_ return -ENOMEM; « OK: tmp, count_active_users()
if (conditionl) { « CAPITALIZE macros, but functional macros can be lower
« Wrong: // do not use this type of commenting
} else if (a > BIG) { « OK: /* These are more welcomed */
while (loopl) {
}
result = 1;
goto out;
}
out:
kfree(buffer);

return result;

) ubuntu

Coding Style 101

Part I

Macros with multiple statements
should be enclosed in a do - while block:

#define macrofun(a, b, c) \

do {
if (@ ==15) |
do_this(b, c); \
} while (0)
Trivia: Why?

“First off, I'd suggest printing out a copy of the GNU coding standards, and
NOT read it. Burn them, it's a great symbolic gesture.”

“some people will claim that having 8-character indentations makes the code
move too far to the right, and makes it hard to read on a 80-character
terminal screen. The answer to that is that if you need more than 3 levels of
indentation, you're screwed anyway, and should fix your program.”

“vou want your comments to tell WHAT your code does, not HOW.”

ubuntu

Understanding diff

Requirement, no buts!

$cp
linux-2.6.22/drivers/net/wireless/Kconfig
linux-2.6.22/drivers/net/wireless/Kconfig.orig

$ vim linux-2.6.22/drivers/net/wireless/Kconfig

$ diff -u \
linux-2.6.22/drivers/net/wireless/Kconfig.orig \
linux-2.6.22/drivers/net/wireless/Kconfig > wireless-kconfig.diff

$ cat wireless-kconfig.diff

--- drivers/net/wireless/Kconfig.orig 2006-09-07 11:57:08.000000000 -0400
+++ drivers/net/wireless/Kconfig 2006-09-07 11:59:02.000000000 -0400
@@ -2,7 +2,7 @@

Wireless LAN device configuration

#

-menu "Wireless LAN (non-hamradio)"
+menu "Wireless LAN - IEEE-802.11"
depends on NETDEVICES

config NET_RADIO
@@ -203,6 +203,7 @@
depends on NET_RADIO && PCI
select FW_LOADER
select IEEE80211
+ select CRYPTO
---help---
A driver for the Intel PRO/Wireless 2200BG and 2915ABG Network
Connection adapters.

ubuntu

No libc - The Kernel AP

The kernel does not use libe and it
shouldn't. The kernel implements its own
library.

e [Ib-y objects

» part of final vmlinux
* Written in C and assembly

ubuntu

lib/Makefile lib/string.c

#

Makefile for some libs needed in the kernel.

#

lib-y := errno.o ctype.o string.o vsprintf.o cmdline.o \
bust_spinlocks.o rbtree.o radix-tree.o dump_stack.o \
idr.o div64d.o int_sqgrt.o bitmap.o extable.o prio_tree.o \
shal.o

lib/string.c —-—-— Triva: what happens to count on the caller?

#ifndef _ HAVE_ARCH_MEMSET

/**

* memset - Fill a region of memory with the given value
* @s: Pointer to the start of the area.

* @c: The byte to fill the area with

* @count: The size of the area.

*

* Do not use memset () to access IO space, use memset_io() instead.
*/

volid *memset (void *s, 1int ¢, size_t count)
{

char *xs = s;

while (count—-)
*xs++ = c;
return s;
}
EXPORT_SYMBOL (memset) ;
#endif

ubuntu

GCC extensions and

Kernel APl hacks

GNU C provides several language features not found in ANSI standard
C. (The -pedantic' option directs GNU CC to print a warning message if any of these
features are used)

"packed'
The "packed' attribute specifies that a variable or structure field
should have the smallest possible alignment

“unused'
This attribute, attached to a function, means that the function is
meant to be possibly unused. GNU CC will not produce a warning
for this function.

#define offsetof (TYPE, MEMBER) ((size_t) & ((TYPE *)0)->MEMBER)

#define container_ of (ptr, type, member) ({ \
const typeof(((type *)0)->member) *_ mptr = (ptr); \
(type *) ((char *)_ _mptr - offsetof (type,member));})

ubuntu

offsetof() and

~attribute

((packed))

#include <stdio.h>

#define offsetof (TYPE, MEMBER) ((size_t) & ((TYPE *)0)->MEMBER)

struct foo {
int a; /* offset: 0 */
char s[5]; /* offset: 4 */
int b; /* What is my offset 2 */

int c;
} __attribute_ ((packed)) ;
int main() {
int r;
r = (size_t) & ((struct foo *) 0)->b;
// r = offsetof (struct foo, b); /* The same */

printf ("offest: %d\n", r);
return r;

}

What is b's offset if:

* s[4] was used? 8 (not packed)
» s[5] was used? 12 (not packed)
« 5[5] with _ attribute ((packed))? 9

ubuntu

Internal kernel data types ."\
-

Portability is not only important in the linux kernel, its a requirement but...

linux/types.h

Bits Kernel-unsigned Kernel-signed Userspace-unsigned Userspace—-signed
8 us8 s8 __u8 __s8

16 ulo sl6 __ulo __slo

32 u32 s32 __u32 _ 832

64 u64 s64 __u6i4 _ so64

Endianness

Big endian: most significant ("biggest") byte (also known as MSB) first
Little endian: least significant ("littlest") Dbyte (also known as LSB) first

A processor's native format may be BE or LE, since Linux driver development needs to be
CPU-agnostic, we provide interfaces for conversion to/from our CPU.

return_type CPU-->LE LE-->CPU CPU-->BE BE-—>CPU

ulo cpu_to_lel6(ul6) lel6_to_cpu(ul6) cpu_to_bel6(ul6) belb6_to_cpu(ulb)
u3?2 cpu_to_le32 (u32) le32_to_cpu(u32) cpu_to_be32(u32) be32_to_cpu(u32)
u64 cpu_to_le64d (ubd) le6d_to_cpu(u6d) cpu_to_bebd (u6d) bebd_to_cpu(ubd)

ubuntu

kmalloc() and kfree()

What does mallloc() use?

kmalloc() is just like libc malloc() but requires a new flag passed -- we are now dealing with memory
directly though so we need to get specific about our requirements in memory allocation. This is what the
flag provides, an interface to specifying details of the requested memory.

struct *foo = kmalloc(sizeof (struct foo), GFP_KERNEL);
if (foo == NULL)
return —-ENOMEM;

GFP_ATOMIC means roughly "make the allocation operation atomic". This means that the kernel will try to
find the memory using a pile of free memory set aside for urgent allocation. If that pile doesn't have
enough free pages, the operation will fail. This flag is useful for allocation within interrupt handlers.

GFP_KERNEL will try a little harder to find memory. There's a possibility that the call to kmalloc() will sleep
while the kernel is trying to find memory (thus making it unsuitable for interrupt handlers). It's much
more rare for an allocation with GFP_KERNEL to

fail than with GFP_ATOMIC.

GFP_BUFFER has the lowest priority, and doesn't try to free other pages if the requested memory isn't
available.

In all cases, kmalloc() should only be used allocating small amounts of memory (a few kb). vmalloc() is
better for larger amounts.

ubuntu

Linux kernel linked |i

iImplementation

St

include/linux/list.h

struct list head {
struct list_head *next, *prev;

}i
#define LIST _HEAD INIT (name) { & (name), & (name) }

#define LIST_HEAD (name) \
struct list_head name = LIST_HEAD_ INIT (name)

static inline void __list_add(struct list_head *new,
struct list_head *prev,
struct list _head *next)

next—->prev = new;
new—>next = next;
new—>prev = prev;
prev-—>next = new;

}

Available linked lists:

* Kernel modules

* netdevices

o list of INET protocols

* list of packet handlers
e etc...

One of the most popular
kernel data structures

static inline void list_add(struct list_head *new, struct list_head *head)

{

__list_add(new, head, head->next);

}

ubuntu

lterating over the lists

#define list_entry(ptr, type, member) \
container_of (ptr, type, member)

/**
* list_for_each_entry - iterate over list of given type
* (@pos: the type * to use as a loop cursor.
* @head: the head for your list.
* (@member: the name of the list struct within the struct.
*/
#define list_for_ each_entry (pos, head, member) \
for (pos = list_entry((head)->next, typeof (*pos), member),; \
prefetch (pos—>member.next), &pos—->member != (head); \
pos = list_entry (pos—>member.next, typeof (*pos), member))
/**
* list_for_each_entry _safe - 1terate over list
* of given type safe against removal of list entry
* (dpos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* (@member: the name of the list_struct within the struct.
*/
#define list_for_each_entry_safe (pos, n, head, member) \
for (pos = list_entry((head)->next, typeof (*pos), member), \
n = list_entry (pos—>member.next, typeof (*pos), member); \
gspos—>member != (head); \
pos = n, n = list_entry(n->member.next, typeof (*n), member))

ubuntu

Force a context switch to a new procedure or task.
Used for hardware or software interrupts of the CPU
and exceptions.

Interrupt types (origins):

 Synchronous - executing code
 Asynchronous - response to hardware or exception
detected

Categories (classification):

 Maskable Interrupts
« Nonmaskable Interrupts

ubuntu

Standard interrupts

Intel 8259 - there since the beginning, part of IBM's PC/XT (1983, processor 8088) and PC/AT (1984, processor
80286). IRQ vectors (aka IRQ lines, IRQs) fit into an unsigned one-byte int (range 0-255). 0-31 unmaskable;
32-47 maskable, IRQ lines 1-15; 48-255 software interrupts.

divide error

debug exception

NMI interrupt

Breakpoint

INTO—detected Overflow
BOUND range exceeded
Invalid opcode

coprocessor not available
double fault

coprocessor segment overrun
10 invalid task state segment
11 segment not present

12 stack fault

13 general protection

14 page fault

15 reserved

16 COpProcessor error

17-31 reserved

32-255 maskable interrupts

O Joy Ul b WP O

O

*128 (0x80) - Special Software Interrupt

Today we move away from Programmable Interrupt Controllers (PIC, a multiplexor) like the
x86 popular Intel 8259 to APICs, introduced for SMP support, to Message Signaled Interrupts
(MSI). MSI is part of PCI 2.2 and later PCI Express.

Hierarchical privilege levels

The idea Is to use hardware to enforce protection and
access to system resources. Introduced by the Multics
operating system (UNIX pun father) as “hardware

supported rings”. Multics introduced 8 rings, today's
Unices use only 2 rings.

« Supervisor mode - Kernel space
* Protected mode - Userspace

Need a way to let userspace talk to kernel space...

ubuntu

Interrupt Ox80 - System Calls

We use interrupt 128 (0x80) for System Calls. This software interrupt,
initialized at system startup (like system clock vector), is used to
transfer control to the kernel. Userspace uses system calls as means
to access protected system resources. The kernel is in charge of the

protected resources, the kernel listens to userspace through system
calls.

From wikipedia on IA-32:

“The 386 and all other IA-32 processors have eight 32-bit general
purpose regqisters for application use. AMD64 processors double this to
16. There are 8 floating point stack registers (also doubled in AMD64
processors). Later processors added new registers with their various
SIMD instruction sets too, such as MMX, 3DNow!, SSE, SSE2, SSE3,
and SSSE3.”

ubuntu

General purpose registers .t'\
®

General data registers

All of the four following registers may be used as general purpose registers. However each has some
specialized purpose as well. Each of these registers also have 16-bit or 8-bit subset names.

* EAX (At 000) Dedicated accumulator which is used for all major calculations.

* ECX (At 001) The universal loop counter which has a special interpretation for loops.

* EDX (At 010) The data register, which is an extension to the accumulator, stores data relevant
to the operation applied to the accumulator.

* EBX (At 011) Currently used for free storage but was originally used as a pointer in 16-bit mode

General address registers
Used only for address pointing. They have 16-bit subset names, but no 8-bit subsets.

* ESP (At 100) Stack pointer. Is used to hold the top address of the stack.

* EBP (At 101) Base pointer. Is used to hold the address of the current stack frame. It is also
sometimes used as free storage.

* ESI (At 110) Source index. Commonly used for string operations. It has a one-byte opcode for
loading data from memory to the accumulator.

* EDI (At 111) Destination index. Commonly used for string operations. Has a one-byte STOS
instruction to write data out of the accumulator.

* EIP Instruction pointer. Holds the current instruction address.

ubuntu

System call example

kernel/sys.c

asmlinkage long sys_newuname (struct new_utsname user * name)

{

int errno = 0;

down_read (&uts_sem) ;

if (copy_to_user (name, &system_utsname, sizeof *name))
errno = —-EFAULT;

up_read (&uts_sem) ;

return errno;

}

include/asm-i386/1linkage.h

#define asmlinkage CPP_ASMLINKAGE _ attribute_ ((regparm(0)))

include/asm-1386/unistd.h

#define __ NR_uname 122

arch/i386/kernel/syscall_table.S
.long sys_newuname

asmlinkage optimization: tells the compiler that the arguments of a function are on the CPU

registers, and not on the stack.
vbuntu

Adding a system call

Add a system call to Linux:
* For each arch add entry to the end of system call table (entry.S)

* For each arch add entry number to asm/unistd.h
* Needs to be part of vmlinux — any part of kernel/ as kernel/sys.c

ubuntu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

