
The Ondemand Governor
Past, Present, and Future

Venkatesh Pallipadi Alexey Starikovskiy

Intel Open Source Technology Center

venkatesh.pallipadi@intel.com

alexey.y.starikovskiy@intel.com

Abstract

ondemand is a dynamic in-kernel cpufreq
governor that can change CPU frequency de-
pending on CPU utilization. It was first intro-
duced in the linux-2.6.9 kernel. Its simplistic
policy provided significant benefits to laptops,
desktops, and servers alike by making use of
fast frequency-switching features of the proces-
sors to effectively power-manage them.

This paper starts with a description of the
ondemand governor present in the 2.6.9 ker-
nel: the algorithm and tuning parameters in that
governor. In particular, it highlights the signif-
icant difference between the ondemand gov-
ernor vs. the user-level cpufreq governors.
This section also includes a brief overview of
how to configure and run the ondemand gov-
ernor.

Next is a discussion of various optimizations
to the original ondemand algorithm. Some
of these changes were driven by the new pro-
cessor support of dynamic changing of fre-
quency in multi-core and multiprocessor sys-
tem environments. This section highlights the
challenges of changing frequency in a multi-
processor system environment such as prevent-
ing frequency change in one processor affect-

ing other processors. It also discusses relative
power/performance data with the ondemand
governor and its various optimizations.

This paper concludes with a few ideas about
where the ondemand governor is headed in
the future, including additional features that
are nice to have and how the ondemand gov-
ernor can be made more useful in a wide
range of systems—from handhelds to servers.
This discussion touches upon changes that may
be required in kernel subsystems other than
cpufreq, in order to improve effectiveness of
the ondemand governor.

1 Introduction

Most of the latest microprocessors have mecha-
nisms to save power by changing the core volt-
age and frequency at run time. Section 2.1
gives a detailed view on this.

This technique was first widely deployed on
mobile systems due to their battery life require-
ments, but is now common on desktops and
servers as well.

With this technique being widely used in dif-
ferent kinds of systems, there has been a

658 • The Ondemand Governor

constant stream of optimizations happening
in the cpufreq infrastructure itself, in the
ondemand governor, and also in low-level
drivers and ACPI [4]. Recent changes in
cpufreq include the ability to handle CPU
hot-plug cleanly and also the ability to deal
with processor groups sharing one frequency.
This latter feature support is important in multi-
core and multi-thread environments, where
platforms may have restrictions of running dif-
ferent logical processors at same frequency.
This paper will deal in detail with changes in
the ondemand governor and low-level gover-
nors that use ACPI to identify that all CPUs
share the same frequency.

Section 2 of this paper includes a primer on
cpufreq. Section 3 covers the motivation
for the ondemand governor and the original
ondemand algorithm. In Section 4, we dis-
cuss various optimizations to the ondemand
governor since its original inception into the
Linux kernel, followed by some ongoing inves-
tigations. In Section 5 we deal with how Fre-
quency Voltage changes happen in presence of
multiple logical processors in a package. This
issue, although orthogonal to the ondemand
governor in itself, is critical for saving power in
a multi-core and multi-thread CPU world. Sec-
tion 6 includes measurement results from our
lab, made with various governors and optimiza-
tions. We conclude the paper with a glimpse of
changes that are likely to come to ondemand
in the future. Unless otherwise mentioned, all
the kernel-specific details in the paper will be
for the 2.6.16 kernel.

2 Background

2.1 Physics

Current CMOS electronics consumes power in
three big areas:

P = P1 +P2 +P3

leakage – current going either through sub-
strate (under schematics) or not fully
closed transistors (through schematics)
and depends on voltage, thus this part
of the power will be proportional to the
square of the voltage:

P1 = IL ∗UC = U2
C/RL

recharging parasitic capacitance of wires and
inputs—depends on both frequency and
voltage, linear on frequency and square on
voltage.

P2 = U2
C/RP = U2

C ∗CP ∗F

shoot-through current – happens during the
switch of the CMOS circuit then one tran-
sistor is already open while opposite to it
is just started to close, and thus, is linear
proportional to frequency and square pro-
portional to voltage.

P3 = U2
C ∗F/RS

Summarizing the above, consumed power is
proportional to square of core voltage and ei-
ther constant or linear to frequency, depend-
ing on which power consumer on a chip dom-
inates. Maximum frequency of the CMOS cir-
cuit depends on core voltage as well, and thus,
to save power we need to decrease the core volt-
age, but beforehand set frequency to value, al-
lowed at this reduced voltage. Changing the
frequency alone does not bring any significant
benefits. This is why drivers that modulate the
clock without changing the voltage are ineffec-
tive at saving power.

2.2 Cpufreq and governors

cpufreq is the subsystem of the Linux ker-
nel that allows frequency to be explicitly set on

2006 Linux Symposium • 659

processors [3]. cpufreq provides a modular-
ized set of interfaces to manage the CPU fre-
quency changes. Figure 1 depicts the high-level
cpufreq infrastructure.

The primary components of this infrastructure
are as follows:

Cpufreq module provides a common inter-
face to the various low-level, CPU-specific
frequency control technologies and high-
level CPU frequency controlling policies.
cpufreq decouples the CPU frequency
controlling mechanisms and policies and
helps in independent development of the
two. It also provides some standard inter-
faces to the user, with which the user can
choose the policy governor and set param-
eters for that particular policy governor.

CPU-specific drivers implement different
CPU frequency changing technologies,
such as Intel R© SpeedStep R© Technology,
Enhanced Intel R© SpeedStep R© Tech-
nology [6], AMD PowerNow!

TM
, and

Intel Pentium R© 4 processor clock mod-
ulation. On a given platform, one or
more frequency modulation technologies
can be supported, and a proper driver
must be loaded for the platform to per-
form efficient frequency changes. The
cpufreq infrastructure allows use of one
CPU-specific driver per platform. Some
of these low-level drivers also depend on
ACPI methods to get information from
the BIOS about the CPU and frequencies
it can support.

In-kernel governors. The cpufreq infras-
tructure allows for frequency-changing
policy governors, which can change the
CPU frequency based on different criteria,
such as CPU usage. The cpufreq infras-
tructure can show available governors on
the system and allows the user to select a

governor to manage the frequency of each
independent CPU.

Kernel 2.6.16 comes bundled with five dif-
ferent governors. Three of these governors
can be run on any kind of CPU that has a
low-level driver to change the frequency at
run time and can be chosen as default gov-
ernor at compile time:

Performance governor keeps the
CPU at the highest possible fre-
quency within a user-specified
range.

Powersave governor keeps the CPU at
the lowest possible frequency within
a user-specified range.

Userspace governor exports the avail-
able frequency information to the
user level (through the sysfs) and
permits user-space control of the
CPU frequency. All user-space dy-
namic CPU frequency governors use
this governor as their proxy.

There are two relatively new governors,
ondemand and conservative, capa-
ble of frequent load monitoring on CPUs
which can do fast frequency switching.

ondemand governor was introduced
into Linux kernel in 2.6.9 and rest
of this paper covers in detail the al-
gorithm, usage, and recent, ongoing,
and future changes to this governor.

conservative governor is a fork of
the ondemand governor with a
slightly different algorithm to decide
on the target frequency. Most of the
configuration details of ondemand
in this paper also holds true for the
conservative governor.

660 • The Ondemand Governor

...

cpufreq module (with /proc and /sys interfaces)

performance powersave userspace ondemand

powersaved cpuspeed

acpi-cpufreq speedstep-centrino powernow-k8

ACPI processor driver

User-level

governors

In-kernel

governors

CPU-specific

drivers

Figure 1: cpufreq infrastructure

2.3 cpufreq and sysfs interfaces

The user interface to cpufreq is through
sysfs. cpufreq provides the flexibil-
ity to manage CPUs at a per-processor
level (as long as hardware agrees to man-
age CPUs at that level). The inter-
face for each CPU will be under sysfs,
typically at /sys/devices/system/cpu/

cpuX/cpufreq, where X ranges from 0
through N-1, with N being total number of log-
ical CPUs in the system.

The basic interfaces provided by cpufreq
are:

linux:> cd /sys/devices/system/cpu

linux:> cd cpu0/cpufreq

linux:> ls -1 -F

affected_cpus

cpuinfo_cur_freq

cpuinfo_max_freq

cpuinfo_min_freq

scaling_available_frequencies

scaling_available_governors

scaling_cur_freq

scaling_driver

scaling_governor

scaling_max_freq

scaling_min_freq

stats/

All these files can be read by doing a cat and
all the writable files can be written to using a
echo and redirection into the file. stats/ is
a directory and will be discussed in Section 2.4.
All the frequency values are in kHz.

Reading cpuinfo_max_freq and cpuinfo_

min_freq will give the maximum and min-
imum frequency supported by the CPU and
cpuinfo_cur_freq will read the current fre-
quency from hardware and display it.

scaling_available_frequencies lists
out all the available frequencies for the CPU.

scaling_available_governors lists out
all the governors supported by the kernel. Note
that the governor modules must be loaded
through modprobe for it to appear here. The
administrator can echo a particular available
governor into scaling_governor in order
to change the governor on a particular CPU.

scaling_cur_freq will return the cached

2006 Linux Symposium • 661

value of the current frequency from the
cpufreq subsystem. scaling_max_freq

and scaling_min_freq are user controlled
upper and lower limits, within which the gov-
ernor will operate at any time.

scaling_driver names the low-level
CPU-specific driver that is used to change the
CPU frequency.

In addition to above interfaces, the running
governor may add some more interfaces of its
own, which can be used to manage the fre-
quency or fine-tune the governor.

2.4 cpufreq-stats

The interfaces under the stats/ directory
provide the statistics about the usage of fre-
quency changes on any particular CPU. The ex-
act details of the interfaces and their meaning
can be found in [1].

2.5 cpufreq-based tools

Reading and changing different fields in the
specific sysfs directory by hand on a system
with a lot of CPUs can be painful and time con-
suming. Dominik Brodowski has led the devel-
opment of cpufrequtils containing a set of
tools to make use of cpufreq easier [2].

3 Original on-demand governor

3.1 Motivation

Of the three governors that were there in the
kernel before ondemand, the performance
and powersave governors were static gover-
nors. The userspace governor gave the user

(superuser or root) the control to set the fre-
quency on a particular platform. This userspace
interface could then be used by the daemons
running in userland to manage the CPU fre-
quency over time, depending on the load.
There are multiple userspace programs, like
cpuspeed and powersaved that can use
userspace governor interface and change
the frequency based on load. The userspace
governors would typically sample the utiliza-
tion every few seconds, and then take a decision
on what frequency to go to for the next sam-
ple interval. This method of changing the fre-
quency operates properly with almost any fre-
quency/voltage-changing hardware.

However, hardware capable of low-latency fre-
quency switching can take advantage of soft-
ware that does more aggressive sampling of uti-
lization and change the frequency more often
to suit the workload. For example, Enhanced
Intel Speedstep Technology can switch the fre-
quency with latency as low as 10µS. This faster
sampling will also help in quick response time
for changing workloads, which is critical in
servers and will also bring visible benefit for
laptop users. Think of CPU frequency going to
the max within a few milliseconds after click-
ing on OpenOffice and compare against click-
ing on OpenOffice, with the CPU running at
low frequency for several seconds, and then in-
creasing the frequency to the maximum.

But doing this frequent polling from userspace
may add more overhead due to kernel to user
transition and reading/writing /proc/ and
/sys files, etc. This was the original motiva-
tion behind the ondemand governor. Doing
the dynamic frequency change inside the ker-
nel, more often, with less overhead. Also, the
kernel is the right place to take the frequency
decision as it has lot of other information about
the system overall and the particular CPU [7].

662 • The Ondemand Governor

3.2 Algorithm

The design goal with the original ondemand
governor was to keep the performance loss due
to reduced frequency to minimum and to keep
the code simple. With that we came up with
a simplistic algorithm to dynamically manage
the frequencies of different CPUs on the sys-
tem. ondemand managed each CPU individu-
ally, hence on an SMP server, with only one ac-
tive thread, CPU running the active thread will
run at full speed, while other threads will con-
serve power by running at a lower frequency.

Figure 2 shows the original ondemand algo-
rithm at a high-level.

for every CPU in the system
every X milliseconds

get utilization since last check
if (utilization > UP_THRESHOLD)

increase frequency to MAX

every Y milliseconds
get utilization since last check
if (utilization < DOWN_THRESHOLD)

decrease frequncy by 20%

Figure 2: Original ondemand algorithm

Note that the sampling frequency is a function
of transition latency by the hardware and the
HZ, as HZ is the unit of idle measurement in the
current kernel.

3.3 Configuring ondemand governor

The default governor that the system uses de-
pends on the kernel configuration and the init
scripts in the installation. You can check the
current governor that is being used on your sys-
tem by looking at /sys/devices/system/
cpu/cpuX/cpufreq/scaling_governor.

If your system is not already using the
ondemand governor, you can switch the
governor using the cpufreq sysfs inter-
face. To use the ondemand governor, make
sure the ondemand governor is configured
in the kernel. If it is configured as a mod-
ule, do a modprobe of cpufreq_ondemand.
Then you can change the governor by a
simple echo ondemand > /sys/devices/

system/cpu/cpuX/cpufreq for each CPU
X. Note that in order to do this on every boot,
you will have to change/add an init script.

Also note that if your CPU is not capable of fast
switching of CPU frequency, then the above
echo command may fail and you may con-
tinue to use the governor that was set before.

3.4 Tunable Parameters

A single policy governor cannot satisfy all of
the needs of applications in various usage sce-
narios. The ondemand governor exports some
tuning parameters to userspace that can fine-
tune the algorithm for specific usage scenarios.
Below is the list of tunables as they appear in
/sys. Note that the will only appear if the
ondemand governor is active on this CPU.

linux: # cd \
/sys/devices/system/cpu
linux: # cd cpu0/cpufreq/ondemand/
linux: # ls -1
ignore_nice_load
sampling_rate
sampling_rate_max
sampling_rate_min
up_threshold

linux: # cat sampling_rate_max

55000000

linux: # cat sampling_rate_min

55000

These times are measured in microseconds, de-
noting the minimum and maximum sampling

2006 Linux Symposium • 663

rate. These values are read-only, and prede-
termined by the kernel as a function of P-state
transition latency.

linux: # cat sampling_rate
110000

sampling_rate is a read-write file control-
ling how often the ondemand governor checks
CPU utilization and tries to increase the CPU
frequency at this rate. This field is in units of
microseconds.

linux: # cat up_threshold
80

up_threshold is a read-write file show-
ing the CPU-utilization threshold. When-
ever the current utilization is more than up_
threshold, the ondemand governor will
increase the frequency to the maximum.

linux: # cat ignore_nice_load
1

ignore_nice_load is a read-write field
that tells ondemand to treat time spent in /tex-
titniced tasks as idle time.

4 ondemand governor optimiza-
tions

4.1 Changes between 2.6.9 and 2.6.16

Once the ondemand governor started getting
used more widely, there was a lot of community
feedback and patches to improve the algorithm.
Several significant changes that went in since
the original ondemand follow.

Automatic down-scaling of frequency The
original ondemand algorithm, whenever

it noticed a low utilization (less than 20%
busy) reduced the frequency one-by-one
through a range of values supported by
hardware. This conservative approach
was intended to minimize performance
impact. But, as it started getting used
more widely, we did not notice any
performance issues due to the algorithm
in general and there was opportunity to
do more aggressive frequency reduction.
Thanks to Eric Piel and his patch to
this effect, the ondemand algorithm
frequency down-scaling was changed to
jump directly to the lowest frequency that
can keep the CPU ~80% busy. This saves
more power and enables the algorithm to
go to right frequency in one hop under
steady-state conditions.

Coordination of frequencies in software
cpufreq supports multiple processors
sharing the same frequency due to the
hardware design. Say, in a particular
implementation, different processor cores
on a processor package are dependent
on each other in terms of frequency.
cpufreq supports it by managing these
two CPUs together as one entity. In order
to support this setup, the ondemand gov-
ernor also has to manage the frequency of
this entity based on the utilization of these
two CPUs. The ondemand governor was
changed to look at the utilization of all
CPUs that are dependent this way and
change the frequency of all of them based
on highest utilization among the group.

4.2 Changes under investigation

There are a few other changes to the algorithm
that are currently being investigated and can get
into the base kernel in immediate future.

Unify up-scaling and down-scaling paths
The original ondemand governor had a

664 • The Ondemand Governor

tunable to change the rate of ondemand
CPU usage polling to increase the fre-
quency and ondemand CPU usage
polling, and an independent tunable to
decrease the frequency. By default, the
CPU usage polling to decrease the fre-
quency was 10 times slower than the CPU
usage polling to increase the frequency.
The main reason for having this tunable
was to keep any performance loss due to
ondemand to a minimum. But over a
period of ondemand usages, we have
noticed that there is no advantage to
having this tunable. In recent kernels,
default sampling interval for frequency
decrease is same as sampling rate for
increasing the frequency.

By removing this option for different up-
and down-scaling sampling frequency, we
can cut the path length in ondemand
sampling by half, which will be critical
given how frequently we do the sampling.

Parallel calculation of utilization The origi-
nal ondemand was doing the sampling
and utilization in a centralized way for
all CPUs. This does not scale well with
increase in logical CPUs. One opti-
mization is to have this sampling done
at a per-cpu or per-domain having the
shared frequency level instead of central-
ized sampling. Also, we can remove the
locks/semaphore in the ondemand sam-
pling path that can make ondemand scale
well with increase in number of CPUs.

Dedicated workqueue ondemand has
been using keventd and the generic
workqueue interfaces to schedule the call-
backs for periodic sampling. This callback
would get called on one particular CPU,
and ondemand sampling will run in
context of keventd. One complication
here, however, is if we want to change the
frequency for a group of CPUs sharing

the frequency, we may end up moving this
particular process to a different CPU to
make some calls to change the frequency.
But we will be holding onto keventd
from the original CPU and we may be
delaying some other service that needs
keventd. So, another change that adds
value is to have dedicated kernel threads
for ondemand and do the sampling and
changing frequencies in the context of
that particular kernel thread.

5 Coordination of P-states

With more than one logical package per phys-
ical socket, there are different kinds of fre-
quency dependencies. This dependency is
mainly due to hardware implementation and
if OS knows about these dependencies, it
can make more informed frequency decisions.
There are different coordination schemes that
can be implemented on any system.

There are four coordination schemes of inter-
est. In the first two, the OS is ignorant of hard-
ware dependencies. In the remaining two, the
OS is aware of hardware dependencies.

5.1 Hardware coordination without OS
knowledge

The hardware can do the coordination among
these dependent logical CPUs internally with-
out the knowledge of the OS. One way to im-
plement it: hardware maintains multiple sets
of registers to store the frequency requested
by different logical processors, and then picks
the maximum frequency requested by the group
of these dependent CPUs to enforce that fre-
quency on all CPUs belonging to the group.
Hardware doing this coordination transparently

2006 Linux Symposium • 665

will mean that OS still thinks each CPU is run-
ning on its own frequency.

This scheme has both an advantage and a dis-
advantage. The advantage is that no change is
required in the OS to support this. cpufreq
will still think that each CPU is independent
and there will be different /sys/devices/
system/cpu/cpuX/cpufreq directories for
each CPU, even though they are dependent.

The disadvantage is that this can lead to bad de-
cision making at times, as in the following ex-
ample. CPU 0 and CPU 1 are dependent logical
CPUs and can run at one constant frequency.
Say at a given point in time, CPU 0 is at high-
est frequency (due to its load) and CPU 1 asks
for a lower frequency. Hardware will do the co-
ordination and run both CPUs at the higher fre-
quency. But the OS will think CPU 1 is running
at a lower frequency. On the next ondemand
polling, CPU 1 will again notice that the CPU
is idle (as it is actually still running at higher
frequency than requested) and try to reduce the
frequency further, even though the first lower
request had no effect. Now if CPU 0 goes idle
and lowers its frequency below CPU 1, then
CPU 1 is now the maximum and it may run
for a short time at a speed that is slower than
it would have requested if it were an indepen-
dent CPU.

5.2 BIOS coordination without OS knowl-
edge

This scheme is very similar to Hardware co-
ordination without OS knowledge. The only
difference is that the BIOS does the actual
coordination instead of hardware. BIOS can
keep track of frequency requests from different
CPUs in its own private space, pick the high-
est request and then make hardware calls to set
the frequency at that highest request. The ad-
vantage and disadvantage is same as above, but

with an additional disadvantage. Anything that
runs in BIOS has to trap through SMM and this
can result in an order of magnitude higher la-
tency than the hardware coordination.

5.3 Hardware/BIOS coordination with OS
knowledge

Similar to the two schemes above, except now
the OS knows that this particular group of
CPUs is dependent on each other. The OS
will now know that hardware coordination is
present and hardware can have additional inter-
faces, so that OS knows the frequency of a par-
ticular CPU over time. The OS can either man-
age each CPU independently (with a separate
cpufreq directory for each CPU) or can do
coordination in software and manage all the de-
pendent CPUs as one unit (with one cpufreq
directory for all the dependent CPUs).

5.4 Software coordination

In this scheme, the OS determines the log-
ical CPUs that are dependent and does all
the coordination required in software. The
OS can monitor all the dependent CPUs to-
gether and make one frequency change re-
quest to hardware, depending on informa-
tion from all the dependent CPUs. In this
case Linux will have one cpufreq direc-
tory for all the dependent CPUs and /sys/

devices/system/cpu/cpuX/cpufreq, for
all X in dependent CPUs, will be a sym-
bolic link to one common cpufreq inter-
face. /sys/devices/system/cpu/cpuX/

cpufreq/affected_cpus interface will pro-
vide the list of CPUs that share same frequency,
in case of software coordination. Also, note
that in this case, the OS may depend on the
BIOS to know what particular logical CPUs are
dependent on each other. ACPI 3.0 provides the

666 • The Ondemand Governor

_PSD interface where the OS can get this infor-
mation about all the CPUs that are dependent in
terms of frequency.

5.5 Linux support for coordination

Linux-2.6.17-rc*-mm* has support for
the ACPI 3.0 _PSD method, and the
speedstep-centrino and acpi-cpufreq

drivers can make use of this interface to deter-
mine the dependent CPUs (and also the mode
of coordination—Hardware or Software coor-
dination). Both the cpufreq and ondemand
governor have supported software coordination
since Linux-2.6.14. So, Linux can run the two
OS-aware coordinations schemes if the BIOS
exports the specific ACPI interfaces.

Currently, most of the BIOSes do not provide
any coordination information to OS and Linux
will run in the hardware or BIOS coordination
schemes.

6 Performance Measurements

6.1 Methodology used for measurements

In order to be able to compare different im-
provements to cpufreq algorithms, we have
set up an experimental system, running a stan-
dard web server workload over SSL. We have
measured 12V DC current to server CPUs.
Loading clients were connected to server by di-
rect 1Gb links. We choose to not use HTTP
accelerators such as TUX, because our primary
goal was not getting record scores, but to have
a well-defined dynamic server load. Pairs of
our graphs show consumed power and num-
ber of conforming client-server connections vs.
number of requested connections. The tested
system is a 4-socket Xeon MP dual-core and
hyper-threaded machine (with a total of 16 log-
ical processors) with 8GB of RAM.

6.2 Experiment setup

Power consumed by the system can be
measured by special power meters such as
WattsUp? or manually by means of various sen-
sors, introduced into the system under test. In
the latter case, one measures separately voltage
(U) (or treats it as a known value) and current
(I), running through the system and then mul-
tiplies acquired values to get consumed power
(P = U ∗ I). In the case of internal DC sup-
ply voltages (12V), one can sample current
with 100Hz frequency and get pretty high ac-
curacy. We used one of the cheapest USB
DACs around—PMD-1208LS, other choices
being devices from LabJack or even sound-
card input. In order to measure current with
the DAC one needs to convert it into voltage.
This could be done by inserting a milliOhm-
range resistor into a powering wire, or mea-
sure a magnetic flux around the wire with Hall-
effect sensor. We used a second approach with
split-core sensors CR5410S from CRMagnet-
ics which could be wrapped around the wire
without a need to break it. This setup allowed
for about 1-Watt variation in power measure-
ments from run to run, which is more than ad-
equate, considering more than 600 Watt peak
power consumption. Thus we choose to show
on graphs results as is, without additional aver-
aging.

 CPU

 CPU

power

supply

DAC

12V 220V AC

1 Gbit links

client

manager

Server

USB

Figure 3: Experiment setup

2006 Linux Symposium • 667

6.3 No power management, userspace,
original ondemand

The following picture shows the results on a
16-logical-CPU system with different gover-
nors. performance and powersave gov-
ernors have power delta of about 10%, while
ondemand and userspace stay in between.
Performance degradation is significant with
powersave and barely visible with dynamic
governors.

6.4 Original ondemand and experimental
governors

These graphs represent new experiments with
the ondemand:

2.6.9 First ondemand, from kernel 2.6.9, ap-
pears to not save any power in such a
system, while trashing performance. In-
cluded here for reference.

clean Removed duplicating down-sampling
calculations.

parallel Introduction of own workqueue and
scheduling of utilization calculations on
each CPU group.

fastcheck Make a check of the utilization
somewhat faster in the case of setting high
frequency.

idle Use idle_notifier to find exact idle
times.

7 Future Work

7.1 Impact on other subsystems—
Scheduler changes

Today the Linux scheduler does not have any
knowledge of frequency at which a processor is

running. It assumes each CPU on an SMP sys-
tem has the same amount of horse-power and
tries to balance the load equally across CPUs.
Recent smpnice patches have added the pro-
cess priority information into the scheduler. We
also need to add the CPU horsepower into the
scheduler as well.

[5] talks about making the scheduler aware of
frequency dependencies across logical proces-
sors in a multi-core environment. The sched-
uler can change the load balancing behavior,
depending on whether a system wants to op-
timize performance or power. For instance, on
a DP1 system with each package being dual-
core, and with performance policy, two active
threads should run on different packages, keep-
ing one core on each package idle. This will
optimize resource utilization of all the shared
resources across two cores on a package. When
the same setup is running in power optimized
policy, two active threads will run on two cores
of a single package, allowing other two cores
of other package to go idle and also to lower
frequency/voltage.

Even in normal SMP (without threads or cores),
to get maximum power savings, the scheduler
should try to get one CPU 100 percent busy,
even though with some loss in response time,
before moving tasks to next CPU. This is a yet-
to-be-explored area at this time.

7.2 Callback and micro-accounting for idle

The current ondemand governor depends on
the idle/busy statistics collected at the sched-
uler ticks. If at the tick instance the CPU
was idle, then whole tick is considered idle
and vice-versa. But, if we can do a micro-
accounting of idle time then we get a more
accurate number of time spent idle and time

1DP = Dual Package.

668 • The Ondemand Governor

 420

 440

 460

 480

 500

 520

 540

 560

 580

 600

 620

 150 200 250 300 350 400 450 500 550

12
V

 P
ow

er
, W

Requested connections

Powersave
2.6.9

Ondemand
Userspace

Performance

Figure 4: Power consumption with original governors

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 400 420 440 460 480 500 520 540

C
on

fo
rm

in
g

co
nn

ec
tio

ns

Requested connections

Powersave
2.6.9

Ondemand
Userspace

Performance

Figure 5: Performance with original governors

2006 Linux Symposium • 669

 420

 440

 460

 480

 500

 520

 540

 560

 580

 600

 620

 150 200 250 300 350 400 450 500 550

12
V

 P
ow

er
, W

Requested connections

Powersave
Ondemand

Clean
Parallel

Performance

Figure 6: Power consumption with experimental governors

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 400 420 440 460 480 500 520 540

C
on

fo
rm

in
g

co
nn

ec
tio

ns

Requested connections

Powersave
Ondemand

Clean
Parallel

Performance

Figure 7: Performance with experimental governors

670 • The Ondemand Governor

 420

 440

 460

 480

 500

 520

 540

 560

 580

 600

 620

 150 200 250 300 350 400 450 500 550

12
V

 P
ow

er
 ,W

Requested connections

Powersave
Ondemand
Fastcheck

Idle
Performance

Figure 8: Power consumption with experimental governors

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 400 420 440 460 480 500 520 540

C
on

fo
rm

in
g

co
nn

ec
tio

ns

Requested connections

Powersave
Ondemand
Fastcheck

Idle
Performance

Figure 9: Performance with experimental governors

2006 Linux Symposium • 671

spent doing useful work. The kernel can do the
micro-accounting by noting the time of entry
and exit of idle routine and interrupts.

If the idle handler across architecture has to
do accounting for exact idle time, ondemand
will have more accurate idle/busy data and can
take better frequency decisions. Though do-
ing micro-accounting for all the states like user,
kernel, nice, etc. may have some overhead, do-
ing it only for idle/non-idle should be relatively
easy. Andy Kleen has implemented idle noti-
fier callbacks for X86_64, and our experimen-
tal governor makes use of this infrastructure.
We needed to keep overhead of such account-
ing low, because it is called during each inter-
rupt enter/exit.

7.3 Real time threads and impact

The ondemand governor runs in the context
of a kernel thread and the real time processes
running on the system may get higher prior-
ity and run before the ondemand governor
gets a chance to increase the frequency. This
is the current issue with ondemand and real
time threads. There is no clean solution for this
problem, as if we try to increase the frequency
before the real-time process starts, the transi-
tion latency to increase the frequency will delay
the start of the real-time process and also, the
real-time process may not run for a long time,
negating the whole purpose of increasing the
frequency. One solution to this is to have some
callbacks from the scheduler, before it sched-
ules the real-time threads, to ondemand gov-
ernor, which can then increase the frequency
giving the benefit of increased frequency to real
time threads. Note that this has to be a special
case only for real-time threads, as adding some
additional checks/callbacks like this for normal
threads in context switch path will be a prob-
lem as it is a common case and should be be

delayed. More ideas on how to solve this is-
sue, as well as patches to solve this problem,
are welcome :-).

8 Acknowledgments

Thanks to our colleagues at Intel Open Source
Technology Center for their continuous sup-
port. Thanks to efforts of many developers
and testers in open source community. Spe-
cial thanks to Len Brown, Dominik Brodowski,
Andi Kleen, Eric Piel, and Thomas Renninger
for all the support, feedback, and patches.

References

[1] cpufreq-stats documentation.
Documentation/cpu-freq/cpufreq-stats.txt
in Linux kernel source.

[2] cpufrequtils project page.
http://www.kernel.org/pub/
linux/utils/kernel/cpufreq/
cpufrequtils.html.

[3] Dominik Brodowski. Current trend in
linux kernel power management, linuxtag
2005. http://www.free-it.de/
archiv/talks_2005/
paper-11017/paper-11017.pdf.

[4] Len Brown et al. Acpi in linux, ols 2005.
http://www.linuxsymposium.
org/2005/linuxsymposium_
procv1.pdf.

[5] Suresh B. Siddha et al. Chip multi
processing aware linux kernel scheduler,
ols 2005. http://www.
linuxsymposium.org/2005/
linuxsymposium_procv2.pdf.

672 • The Ondemand Governor

[6] Venkatesh Pallipadi. Enhanced intel
speedstep technology and demand-based
switching on linux, intel software net.
http://www.intel.com/cd/ids/
developer/asmo-na/eng/
195910.htm.

[7] Linus Torvalds. Linus about kernel
governor on lkml.
http://marc.theaimsgroup.
com/?l=linux-kernel&m=
103056055008566&w=2.

Disclaimer

The opinions expressed in this paper are those of the
authors and do not necessarily represent the position
of the Intel Corporation.

Linux is a registered trademark of Linus Torvalds.

Intel is a registered trademark of Intel Corporation.

All other trademarks mentioned herein are the prop-
erty of their respective owners.

