
Linux Laptop Battery Life
Measurement Tools, Techniques, and Results

Len Brown len.brown@intel.com

Konstantin A. Karasyov konstantin.a.karasyov@intel.com

Vladimir P. Lebedev vladimir.lebedev@intel.com

Alexey Y. Starikovskiy alexey.y.starikovskiy@intel.com

Intel Open Source Technology Center

Randy P. Stanley randy.p.stanley@intel.com

Intel Mobile Platforms Group

Abstract

Battery life is a valuable metric for improving
Linux laptop power management.

Battery life measurements require repeatable
workloads. While BAPCo R© MobileMark R©
2005 is widely used in the industry, it runs only
on Windows R© XP. Intel’s Open Source Tech-
nology Center has developed a battery life mea-
surement tool-kit for making reliable battery
life measurements on Linux R© with no special
lab equipment necessary.

This paper describes this Linux battery life
measurement tool-kit, and some of the tech-
niques for measuring Linux laptop power con-
sumption and battery life.

This paper also includes example measurement
results showing how selected system configura-
tions differ.

1 Introduction

First we examine common industry practice for
measuring and reporting laptop battery life.

Next we examine the methods available on
ACPI-enabled Linux systems to measure the
battery capacity and battery life.

Then we describe the implementation of a bat-
tery life measurement toolkit for Linux.

Finally, we present example measurement re-
sults applying this toolkit to high-volume hard-
ware, and suggest some areas for further work.

1.1 State of the Industry

Laptop vendors routinely quote MobileMark R©
battery measurement results when introducing
new systems. The authors believe that this
is not only the most widely employed indus-
try measurement, but that MobileMark also re-
flects best known industry practice. So we

1

will focus this section on MobileMark and ig-
nore what we consider lesser measurement pro-
grams.

1.2 Evolution of MobileMark R©

In 1995, BAPCo R©, the Business Applications
Performance Corporation, introduced a battery-
life (BL) workload to support application based
power evaluation. The first incarnation, SYS-
mark BL, was a Windows R© 3.1 based work-
load which utilized office applications to imple-
ment a repeatable workload to produce a "bat-
tery run down" time. Contrary to performance
benchmarks which executed a stream of com-
mands, this workload included delays which
were intended to represents real user interac-
tion, much like a player piano represent real
tempos. Because the system is required to de-
plete its own battery, a master system and phys-
ical interface was required as well as the slave
system under test. In late 1996 the workload
was re-written to support Windows95 adapted
to 32-bit applications.

When Windows R© 98 introduced ACPI sup-
port, BAPCo overhauled the workload to shed
the cumbersome and expensive hardware inter-
face. SYSmark98 BL became the first software
only BL workload. (No small feat as the system
was now required to resurrect itself and report
BL without adding additional overhead.) Addi-
tionally a more advanced user delay model was
introduced and an attempt was made to under-
stand the power performance trade-off within
mobile systems by citing the number of loops
completed during the life of the battery. Al-
though well intended, this qualification pro-
vided only gross level insight into the power
performance balance of mobile systems.

In 2002, BAPCo released MobileMark 2002
[MM02] which modernized the workload and
adopted a response based performance quali-
fier which provided considerably more insight

into the power performance balance attained by
modern power management schemes. Addi-
tionally they attempted to better define a more
level playing field by providing a more rigor-
ous set of system setting requirements and rec-
ommendations, and strongly recommending a
light meter to calibrate the LCD panel bright-
ness setting to a common value. Additionally,
they introduced a "Reader" module to comple-
ment the Office productivity module. Reader
provided a time metric for an optimal BL usage
model to define a realistic upper bound while
executing a real and practical use.

In 2005 BAPCo’s MobileMark 2005 [MM05]
added to the MobileMark 2002 BL "suite" by
introducing new DVD and Wireless browsing
modules as well as making slight changes to in-
crease robustness and hold the work/time con-
stant for all machines. Today these modules
help us to better understand the system balance
of power and performance. Multiple results
also form contour of solutions reflective of the
respective user and usage models.

1.3 Learning from MobileMark R© 2005

While MobileMark is not available for Linux,
it illustrates some of the best industry practices
for real use power analysis that Linux measure-
ments should also employ.

1.3.1 Multiple Workloads

Mobile systems are subject to different user 1

and usage models, 2 each with its own battery
life considerations. To independently measure
different usage models, MobileMark 2005 pro-
vides 4 workloads:

1Different users type, think and operate the system
differently.

2Usage models refers to application choices and con-
tent.

2

1. Office productivity 2002SE

This workload is the second edition of Mobile-
Mark 2002 Office productivity. Various office
productivity tools are used to open and modify
office documents.

Think time is injected between various opera-
tions to reflect that real users need to look at
the screen and react before issuing additional
input.

The response time of selected operations is
recorded (not including delays) to be able to
qualify the battery life results and differentiate
the performance level available while attaining
that battery life.

2. Reader 2002SE

This workload is a second edition of Mobile-
Mark 2002 Reader. Here, a web browser reads
a book from local files, opening a new page ev-
ery 2 minutes. This workload is almost com-
pletely idle time, and can be considered an
upper bound, which no "realistic" activity can
possibly exceed.

3. DVD Playback 2005

InterVideo R© WinDVD R© plays a reference
DVD movie repeatedly until the battery dies.
WinDVD monitors that the standard frame rate,
so that the harness can abort the test if the work
level is not sustained. In practice, modern ma-
chines have ample capacity to play DVDs, and
frames are rarely dropped.

4. Wireless browsing 2005

Here the system under test loads a web page ev-
ery 15 seconds until the battery dies. The web
pages are an average of 150 KB. This workload
is not specific to wireless networks, however,
and in theory could be run over wired connec-
tions.

1.3.2 Condition the Battery

In line with manufacturer’s recommendations,
BAPCo documentation recommends condition-
ing the battery before measurement. This en-
tails simply running the battery from full charge
until full discharge at least once.

For popular laptop batteries today, condition-
ing tends to minimize memory effects, extend
the battery life, and increase the consistency of
measurements.

MobileMark recommends conditioning the bat-
tery before taking measurements.

1.3.3 Run the Battery until fully Dis-
charged

Although conditioning tends to improve the ac-
curacy of the internal battery capacity instru-
mentation, this information is not universally
accurate or reliable before or after condition-
ing.

MobileMark does not trust the battery in-
strumentation, and disables the battery low-
capacity warnings. It measures battery life by
running on battery power until the battery is
fully discharged and the system crashes.

1.3.4 Qualify Battery Life with Perfor-
mance

In addition to the battery life (in minutes) Mo-
bileMark Office productivity results always re-
port response time.

This makes it easy to tell the difference between
a battery life result for a low performance sys-
tem and a similar result for a high performance
system that employs superior power manage-
ment.

3

There is no performance component reported
for the other workloads, however, as the user
experience for those workloads is relatively in-
sensitive to performance.

1.3.5 Constant Work/Time

The MobileMark Office productivity workload
was calibrated to a minimal machine that com-
pleted one workload iteration in about 90 min-
utes. If a faster machine completes the work-
load iteration in less time, the system idles until
the next activity cycle starts at 90-minutes.

2 Measurement Methods

Here we take a closer look at the methods avail-
able to observe and measure battery life in a
Linux context.

2.1 Using an AC Watt Meter

Consumer-grade Watt Meters with a resolu-
tion of 0.1Watt and 1-second sampling rate are
available for about 100 US Dollars. 3 While
intended to tell you the cost of operating your
old refrigerator, they can just as easily tell you
the A/C draw for a computer.

It is important to avoid the load of battery
charging from this scenario by measuring. This
can be done by measuring only when the bat-
tery is fully charged, or for laptops that allow
it, running on A/C with the battery physically
removed.

You’ll be able to see the difference between
such steady-state operations as LCD on vs. off,

3Watt’s Up Pro: https://www.doubleed.com

LCD brightness, C-states and P-states. How-
ever, it will be very difficult to observe transient
behavior with the low sampling rate.

Unfortunately, the A/C power will include the
loss in the AC-to-DC power supply "brick".
While an "External Power Adapter" sporting an
Energy Star logo 4 rated at 20 Watts or greater
will be more than 75% efficient, others will not
meet that criteria and that can significantly dis-
tort your measurement results.

So while this method is useful for some types of
comparisons, it isn’t ideal for predicting battery
life. This is because most laptops behave differ-
ently when running on DC battery vs. running
on AC. For example, it is extremely common
for laptops to enable deep C-states only on DC
power and to disable them on AC power.

2.2 Using a DC Watt Meter on the DC con-
verter

It is possible to modify the power adapter by
inserting a precise high-wattage low-ohm resis-
tor in series on the DC rail and measuring the
voltage drop over this resistor to calculate the
current, and thus Watts.

This measurement is on the DC side of the con-
verter, and thus avoids the inaccuracy from AC-
DC conversion above. But this method suffers
the same basic flaw as the AC meter method
above, the laptop is running in AC mode, and
that is simply different from DC mode.

2.3 Replacing the Battery with a DC power
supply

The next most interesting method to measure
battery consumption on a laptop is to pull apart

4http://www.energystar.gov

4

the battery and connect it to a lab-bench DC
power supply.

This addresses the issue of the laptop running
in DC mode. However, few reading this paper
will have the means to set up this supply, or the
willingness to destroy their laptop battery.

However, for those with access this type of test
setup, including a high-speed data logger; DC
consumption rates can be had in real-time, with
never a wait for battery charging.

Further, it is possible that system designers
may choose to make the system run differ-
ently depending on battery capacity. For ex-
ample, high-power P-states may be disabled
when on low battery power – but these en-
hancements would be disabled when running
on a DC power supply that emulates a fully
charged battery.

2.4 Using a DC Watt Meter on an instru-
mented battery

Finally, it is possible to instrument the output
of the battery itself. Like the DC power supply
method above, this avoids the issues with the
AC wattmeter and the instrumented power con-
verter method in that the system is really run-
ning on DC. Further, this allows the system to
adapt as the battery drains, just as it would in
real use. But again, most people who want to
measure power have neither a data logger, nor
a soldering iron available.

2.5 Using Built-in Battery Instrumentation

Almost all laptops come with built in battery in-
strumentation where the OS read capacity, cal-
culate drain and charge rates, and receive ca-
pacity alarms.

On Linux, /proc/acpi/battery/*/
info and state will tell you about your
battery and its current state, including drain
rate.

Sometimes the battery drain data will give a
good idea of average power consumption, but
often times this data is mis-leading.

One way to find out if your drain rate is accu-
rate is to plot the battery capacity from fully
charged until depleted. If the system is running
a constant workload, such as idle, then the in-
strumentation should report full capacity equal
to the design capacity of the battery at the start,
and it should report 0 capacity just as the lights
go out – and it should report a straight line in
between. In practice, only new properly condi-
tioned batteries do this. Old batteries and bat-
teries that have not been conditioned tend to
supply very poor capacity data.

Figure 1 shows a system with an old (4.4AH ∗
10.4V) = 47.520 Wh battery. After fully charg-
ing the battery, the instrumentation at the start
of the 1st run indicates that the battery capacity
of under 27.000 Wh. If the battery threshold
warning was enabled for that run, the system
would have shut down well before 5,000 sec-
onds – even though the battery actually lasted
past 7,000 seconds.

The 1st run was effectively conditioning the
battery. The 2nd run reported a fully charged
capacity of nearly 33.000 Wh. The actual bat-
tery life was only slightly longer than the ini-
tial conditioning run, but in this case the re-
ported capacity was closer to the truth. The
3rd run started above 38.000 Wh and was lin-
ear from there until the battery died after 7,000
seconds. The 4th run showed only marginally
more truthful results. Note that a 10% battery
warning at 4,752 would actually be useful to a
real user after the battery has been conditioned.

Note also that the slope of all 4 lines is the

5

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 1000 2000 3000 4000 5000 6000 7000 8000

ca
p

time

t30/results.office0/stat.log cap
t30/results.office1/stat.log cap
t30/results.office2/stat.log cap
t30/results.office3/stat.log cap

Figure 1: System A under-reports capacity until conditioned

same. In this case, the rate of discharge shown
by the instrumentation appears accurate, even
for the initial run.

The battery life may not be longer than the
slope suggests, it may be shorter. Figure2
shows system B suddenly losing power near the
end of its conditioning run. However, the 2nd
(and subsequent) runs were quite well behaved.

Figure 3 shows system C with a drop-off that is
sure to fool the user’s low battery trip points. In
this case the initial reported capacity does not
change, staying at about 6800 of 71.000 Wh
(95%). However, the 1st run drops off a cliff
at about 11,000 seconds. The 2nd and 3rd run
drop at about 13,500. but subsequent runs all
drop at about 12,000 seconds. So conditioning
the battery didn’t make this one behave any bet-
ter.

Finally, figure 4 shows system D reporting ini-
tial capacity equal to 100% of its 47.950 Wh
design capacity. But upon use, this capacity

drops almost immediately to about 37.500 Wh.
Even after being conditioned 5 times, the bat-
tery followed the same pattern. So either the
initial capacity was correct and the drain rate is
wrong, or initial capacity is incorrect and the
drain rate is correct. Note that this behavior
went away when a new battery was used. A
new battery reported 100% initial capacity, and
0% final capacity, connected by a straight line.

In summary, the only reliable battery life mea-
surement is a wall clock measurement from full
charge until the battery is depleted. Depleted
here means ignoring any capacity warnings and
running until the lights go out.

3 Linux Battery Life Toolkit

The Linux Battery Life Toolkit (bltk) consists
of a test framework and six example workloads.
There are common test techniques that should

6

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

ca
p

time

i5150/results.office0/stat.log cap
i5150/results.office1/stat.log cap

Figure 2: System B over-reports capacity until conditioned

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 2000 4000 6000 8000 10000 12000 14000 16000

ca
p

time

satellite/results.office0/stat.log cap
satellite/results.office1/stat.log cap
satellite/results.office2/stat.log cap
satellite/results.office3/stat.log cap
satellite/results.office4/stat.log cap
satellite/results.office5/stat.log cap

Figure 3: System C over-reports final capacity, conditioning does not help

7

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ca
p

time

d600/results.office0/stat.log cap
d600/results.office4/stat.log cap

Figure 4: System D over-reports initial capacity, conditioning does not help

be followed to assure repeatable results no mat-
ter what the workload.

3.1 Toolkit Framework

The toolkit framework is responsible for
launching the workload, collecting statistics
during the run, and summarizing the results af-
ter a test completes.

The framework can launch any arbitrary work-
load, but currently has knowledge of 6 example
workloads: Idle, Reader, Office, DVD Player,
SW Developer, and 3D-Gamer.

3.2 Idle Workload

The idle workload simply executes the frame-
work without invoking any programs. Statis-
tics are collected the same way as for the other
workloads.

3.3 Web Reader Workload

Web reader workload opens HTML–formatted
version War and Peace by Leo Tolstoy 5 in
Firefox R© and then sends "next page" keyboard
events to browser every two minutes, simulat-
ing interaction with the human reader.

3.4 Open Office Workload

Open Office rev 1.1.4 was chosen for this
toolkit because it is stable and freely available.
It is intended to be automatically installed by
the toolkit to avoid results corruption due to lo-
cal settings and version differences.

5We followed the lead of BAPCo’s MobileMark here
on selection of reading material.

8

3.4.1 Open Office Activities

Currently 3 applications from OpenOffice suite
are used for the Office workload, oowriter,
oocalc and oodraw. The set of common
operations is applied to these applications to
simulate activities, typical for office application
users.

Using oowriter, the following operations
are performed:

• text typing

• text pattern replacement

• file saving

Using oocalc, the following operations are
performed:

• creating spreadsheet;

• editing cells values;

• assigning math expression to the cell;

• expanding math expression over a set of
cells;

• assigning set of cells to the math expres-
sion;

• file saving;

Using oodraw, the following operations are
performed:

• duplicating image;

• moving image over the document;

• typing text over the image;

• inserting spreadsheet;

• file saving.

3.4.2 Open Office User Input

User input consists of actions and delays. Ac-
tions are represented by the key strokes sent
to the application window though the X server.
This approach makes the application perform
the same routines as it does during interaction
with the real user. 6 Delays are inserted be-
tween actions to represent a real user.

The Office workload scenario is not hard-
coded, but is scripted using the capabilities
shown in Appendix A.

3.4.3 Open Office Performance Scores

A single iteration of the office workload sce-
nario completes in 720 seconds. When a faster
machine completes the workload in less than
720 seconds, it is idle until the next iteration
starts.

720seconds = Workload_time+ Idle.

Workload time consists of Active_time – the
time it takes for the system to start applica-
tions and respond to user commands – plus the
delays that the workload inserts to model user
type-time and think-time.

Workload_time = Active_time+Delay_time

So the performance metric for each workload
scenario iteration is Active_time, which is cal-
culated by measuring Workload_time and sim-
ply and subtracting the known Delay_time.

The reported performance score is the average
Active_time over all loop iterations, normal-
ized to a reference Active_time so that bigger
numbers represent better performance:

Per f ormance_score = 100 ∗
Active_re f erence/Average_Active_measured

6The physical input device, such as keyboard and
mouse are not used here.

9

3.5 DVD Movie Playback Workload

mplayer is invoked to play a DVD movie un-
til the battery dies. Note that mplayer does
not report frame rate to the toolkit framework.
For battery life comparisons, equal work/time
must be maintained, so that it is assumed, but
not verified in these tools that modern systems
can play DVD movies at equal frame rates.

3.6 Software Developer Workload

The software developer workload mimics a
Linux ACPI kernel developer: it invokes vi to
insert a comment string into one of the Linux
ACPI header files and then invokes make -j
N on a Linux kernel source tree, where N is cho-
sen to be three times the number of processors
in a system. This cycle is extended out to 12
minutes with idle time to more closely model
constant work/time on different systems.

The Active_time for the developer workload is
the time required for the make command to
complete, and it is normalized into a perfor-
mance score the same was as for the Office
workload.

Per f ormance_score = 100 ∗
Active_re f erence/Average_Active_measured.

3.7 3D Gamer Workload

A 3D gamer workload puts an entirely differ-
ent workload on a laptop, one that is gener-
ally more power-hungry than all the workloads
above.

However, we found that 3D video support is not
universally deployed or enabled in Linux, nor
are there a lot of selections of games that are
simultaneously freely available, run on a broad

range of platforms, and include a demo-mode
that outputs performance.

glxgears satisfies the criteria for being
freely available, universally supported, and
it reports performance; however, that perfor-
mance is not likely to closely correlate to what
a real 3D game would see. So we are not satis-
fied that we have a satisfactory 3D-Gamer met-
ric yet.

In the case of a 3D game workload, a reason-
able performance metric to qualify battery life
would be based on frames/second.

3D_Per f ormance_Score =
FPS_measured/FPS_re f erence

4 Example Measurement Results

System Dell Inspiron 6400
Battery 53 Wh

Processor Intel Core Duo T2500
2GHz, 2MB cache, 667MHz bus

LCD 15.4" WXGA, min bright
Memory 1GB DDR2, 2DIMM, 533MHz

Distribution Novell SuSE 10.1 BETA
GUI KDE

Linux 2.6.16 or later
HZ 250

cpufreq ondemand governor
Battery Alerts ignored
Screen Saver disabled

DPMS disabled
Wired net disabled
Wireless disabled

Table 1: Nominal System Under Test

This section includes example battery life mea-
surements to show what a typical user can do
on their system without the aid of any special
instrumentation.

10

 0

 60

 120

 180

 240

 300

WindowsLinux

Figure 5: Idle: Linux vs. Windows

Unless otherwise specified, the Dell
InspironTM 6400 shown in table 1 was
used as the example system.

Note that this system is a somewhat arbitrary
reference. It has a larger and brighter screen
than many available on the market. It arrived
with a 53 Wh 6-cell battery, but is also avail-
able with an 85 Wh 9-cell battery, which would
increase the absolute battery life results by over
50%. But the comparisons here are generally
of this system to itself, so these system-specific
parameters are equal on both sides.

4.1 Idle Workload

4.1.1 Idle: Linux vs. Windows

Comparing Linux7 with Windows8 on the same
hardware tells us how Linux measures up to
high-volume expectations.

7Linux-2.6.16+ as delivered with Novell SuSE 10.1
BETA

8Windows R© XP SP2

 0

 60

 120

 180

 240

 300

offbrightdim

Figure 6: Idle: Effect of LCD

This baseline comparison is done with pure-
idle workload. While trivial, this "workload" is
also crucial, because a difference in idle power
consumption will have an effect on virtually all
other workloads.

Here the i6400 lasts 288 minutes on Windows,
but only 238 minutes on Linux, a 50 minute
deficit. One can view this as a percentage, eg.
Linux has 238/288 = 83% of the idle battery
life as compared to Windows.

One can also estimate the average power us-
ing the fixed 53 Wh battery capacity. (53Wh ∗
60min/Hr)/288min = 11.0W for Windows.
(53Wh ∗ 60min/Hr)/238min = 13.4W for
Linux. So here Linux is at a 2.4W deficit com-
pared to Windows in idle.

4.1.2 Idle: The real cost of the LCD

While the i6400 has a larger than average dis-
play, the importance of LCD power can not be
over-stated – even for systems with smaller dis-
plays.

11

The traditional screen saver that draws pretty
pictures on an idle screen is exactly the op-
posite of what you want for long battery life.
The reason isn’t because the display takes more
power, the reason is because it takes the proces-
sor out of the deepest available C-state when
there is nothing "useful" to do.

The CPU can be removed from that equation
by switching to a screen saver that does not run
any programs. Many select the "blank" screen
saver on the assumption that it saves power –
but it does not. A Black LCD actually saves
no power vs. a white LCD. This is because the
black LCD has the backlight on just as bright as
the white LCD, but it is actually using fraction-
ally more energy to block that light with every
pixel.

So the way to save LCD power is to dim the
back-light so it is no brighter than necessary to
read the screen; and or turn it off completely
when you are not reading at the screen. Note
that an LCD that is off should appear black in
a darkened room. If it is glowing, then the pix-
els are simply fighting to obscure a backlight
that is still on. A screen saver that runs no pro-
grams and has DPMS (Display Power Manage-
ment Signaling) enabled to turn off the display
is hugely important to battery life.

On the example system, the 238 minute "dim"
idle time drops to 171 for maximum LCD
brightness, and increases to 280 minutes for
LCD off. Expressed as Watts, dim is 13.4W,
bright is 18.6W, and off is 11.4W. So this par-
ticular LCD consumes between 2.0 and 7.2W.
Your mileage will vary.

Note that because of its large demands system
power, analysis of the power consumption of
the other system components is generally most
practical when the LCD is off.

 0

 60

 120

 180

 240

 300

USBNo USB

Figure 7: Idle: Effect of USB

4.1.3 Idle: The real cost of USB

The i6400 has no integrated USB devices. So
if you execute lsusb, you’ll see nothing until
you plug in an external device.

If an (unused) USB 1.0 mouse is connected to
the system, battery life drops 12 minutes to 226
from 238. This corresponds to (14.1−13.4) =
0.7W .

4.1.4 Idle: Selecting HZ

In Linux-2.4, the periodic system timer tick
ran at 100 HZ. Linux-2.6 started life running
at 1000 HZ. Linux-2.6.13 added CONFIG_HZ,
with selections of 100, 1000, and a compromise
default of 250 HZ.

Figure 8 shows that the selection of HZ has a
very small effect on the i6400, though others
have reported larger differences on other sys-
tems. Note that since this difference was small,
this comparison was made in single-user mode.

12

 0

 60

 120

 180

 240

 300

1000250100

Figure 8: Idle: Effect of HZ

4.1.5 Idle: init1 vs. init5

The Linux vs. Windows measurement above
was in multi-user GUI mode – though the net-
work was disabled. One question often asked if
the GUI (KDE, in this example) and other stan-
dard daemons have a significant effect on Linux
battery life.

In this example, the answer is yes, but not
much. Multi-user battery life is 238 min-
utes, and Single-user battery life is 10 min-
utes longer at 248 – only a 4% difference. Ex-
pressed as Watts, 13.4−12.8 = 0.6W to run in
multi-user GUI mode.

However, init5 battery consumption may de-
pend greatly on how the administrator config-
ures the system.

4.1.6 Idle: 7200 vs. 5400 RPM Disk Drives

The i6400 arrived with a 5400 RPM 40GB
Fujitsu MHT2040BH SATA drive. Upgrad-
ing that drive to a 7200 RPM 60GB Hi-
tachi HTS721060G9SA00 SATA drive reduced

 0

 60

 120

 180

 240

 300

init5init1

Figure 9: Idle: init1 vs. init5

single-user 9 idle battery life by 16 minutes, to
232 from 248 (6%). This corresponds to an
average power difference of 0.89W. The spec-
ifications for the drives show the Hitachi con-
suming about 0.1W more in idle and standby,
and the same for read/write. So it is not im-
mediately clear why Linux loses an additional
0.79W here.

4.1.7 Idle: Single Core vs. Idle Dual Core

Disabling one of the cores by booting with
maxcpus=1 has no measurable effect on idle
battery life. This is because the BIOS leaves
the cores in the deepest available C-state. When
Linux neglects to start the 2nd core, it behaves
almost exactly as if Linux had started that core
and entered the deepest available C-state on it.

Note that taking a processor off-line at run-time
in Linux does not currently put that proces-
sor into the deepest available C-state. There is

9init1 idle is used as the baseline here because the dif-
ference being measured is small, and to minimize the risk
that the two different drives are configured differently.

13

a bug10 where offline processors instead enter
C1. So taking a processor offline at run-time
can actually result in worse battery life than if
you leave it alone and let Linux go idle auto-
matically.

4.1.8 The case against Processor Throt-
tling (T-States)

Processor Throttling States (T-states) are
available to the administrator under /proc/
acpi/processor/*/throttling to
modulate the clock supplied to the processors.

State P0 MHz P3 MHz
T0 2000 1000
T1 1750 875
T2 1500 750
T3 1250 625
T4 1000 500
T5 750 375
T6 500 250
T7 250 125

Table 2: Throttling States for the Intel R©
CoreTM Duo T2500

Most systems support 8 throttling states to
decrease the processor frequency in steps of
12.5%. Throttling the processor frequency is
independent of P-state frequency changes, so
the two are combined. For the example, table 2
shows the potential effect of throttling when the
example system is in P0 or P3.

Throttling has an effect on processor frequency
only when the system is in the C0 state execut-
ing instructions. In the idle loop, Linux is in
the Cx state (x : x! = 0) where no instructions
are executed and throttling has no effect, as the
clock is already stopped.

Indeed, T-states have been shown to have a net
negative impact on battery life on some sys-

10http://bugzilla.kernel.org/show_bug.cgi?id=5471

tems, as they can interfere with the mechanisms
to efficiently enter deep C-states.

On the example system, throttling the idle sys-
tem down to the T7, the slowest speed, had a net
negative impact on idle battery life of 4 min-
utes.

Throttling is used by Linux for passive cooling
mode and for thermal emergencies. It is not
intended for the administrator to use throttling
to maximize performance/power or extend bat-
tery life. That is what cpufreq processor perfor-
mance states are for. So the next time you are
exploring the configuration menus of the pow-
ersavd GUI, do NOT check the box that enables
processor clock throttling. It is a bug that the
administrator is given the opportunity to make
that mistake.

4.2 Reader Workload equals Init 5 Idle

Adding the Reader workload to init5 idle re-
sults in exactly the same battery life – 238 min-
utes. The bar chart is left as an exercise for the
reader.

4.3 DVD Movie Workload

4.3.1 DVD Movie on Linux vs. Windows

The DVD movie playback workload is also
attractive for comparing Linux and Windows.
This constant work/time workload leaves little
room for disagreement about what the operat-
ing environment is supplying to the user. DVD
movie playback is also a realistic workload,
people really do sit down and watch DVDs on
battery power.

However, different DVD player software is
used in each operating environment. The Win-
dows solution uses WinDVD R©, and the Linux
measurement uses mplayer.

14

 0

 60

 120

 180

 240

 300

WindowsLinux

Figure 10: DVD: Linux vs. Windows

Here the i6400 plays a DVD on Linux for 184
minutes (3h4m). The i6400 plays the same
DVD on Windows for 218 minutes (3h38m).
This 34 minute deficit puts Linux at about 84%
of Windows. In terms of Watts, Linux is at a
(17.3−14.6) = 2.7W deficit compared to Win-
dows on DVD movie playback.

4.3.2 DVD Movie Single vs. Dual Core

DVD playback was measured with 1 CPU
available vs. 2 CPUS, and there was zero im-
pact on battery life.

4.3.3 DVD Movie: Throttling is not helpful

DVD playback was measured at T4 (50% throt-
tling) and there was a net negative impact of
9 minutes on battery life. Again, throttling
should be reserved for thermal management,
and is almost never an appropriate tool where
efficient performance/power is the goal.

 0

 60

 120

 180

 240

 300

MP7KUP7KMP5KUP5K

Figure 11: Office Battery Life

4.4 Office Workload Battery Life and Per-
formance

The Office workload battery life and perfor-
mance are shown in figure 11 and figure 12,
respectively. The example system lasted 232
minutes with maxcpus=1 and a 5400 RPM
drive, achieving a performance rating of 94
(UP5K in figures 11 and 12). Enabling the 2nd
core cost 6 minutes (-3%) of battery life, but in-
creased performance by 89% to to 178, (MP5K
in figures 11 and 12).

Upgrading the 5400 RPM disk drive to the 7200
RPM model had an 18 minute (8%) impact on
the UP battery life, and an 12 minute (5%) im-
pact on MP battery life. But the 7200 RPM
drive had negligible performance benefit on this
workload. (UP7K and MP7K in figures 11 and
12).

Note that the size of memory compared to the
working set of the Office workload impact how
much the disk is accessed. Were memory to be
smaller or the workload modified to access the
disk more, the faster drive would undoubtedly
have a measurable benefit.

15

 0

 50

 100

 150

 200

 250

 300

MP7KUP7KMP5KUP5K

Figure 12: Office Performance

In summary, the 2nd core has a significant per-
formance benefit, with minimal battery cost on
this workload. However, upgrading from a
5400RPM to 72000 RPM drive does not show
a significant performance benefit on this work-
load as it is currently implemented.

4.5 Developer Workload Battery Life and
Performance

The Developer workload battery life and per-
formance are shown in figure 13 and figure 14,
respectively.

Here the maxcpus=1 5400 RPM baseline
scores 220 minutes with performance of 96.
Enabling the 2nd core had a net positive im-
pact on battery life of 2 minutes, and increased
performance to 172 (+79%). Starting from
the same baseline, upgrading to the 7200 RPM
drive from the 5400 RPM drive dropped battery
life 26 minutes to 194 from 220 (-12%), but in-
creased performance to 175 (+82%). Simulta-
neously enabling the 2nd core and upgrading
the drive reduced battery life 34 minutes to 186

 0

 60

 120

 180

 240

 300

MP7KUP7KMP5KUP5K

Figure 13: Developer Battery Life

 0

 50

 100

 150

 200

 250

 300

MP7KUP7KMP5KUP5K

Figure 14: Developer Performance

16

from 220 (15%), but increased performance to
287 (+198%).

Clearly developers using this class of machine
should always have both cores enabled and
should be using 7200 RPM drives.

5 Future Work

5.1 Enhancing the Tools

The current version of the tools, 1.0.4, could
use some improvements.

• Concurrent Office applications. The cur-
rent scripts start an application, use it, and
then close it. Real users tend to have mul-
tiple applications open at once. It is un-
clear if this will have any significant effect
on battery life, but it would be better eye
candy.

• Add sanity checking that the system is
properly configured before starting a mea-
surement.

5.2 More Comparisons to make

The example measurements in this paper sug-
gest even more measurements.

• Effect of run-time device power states.

• Comparison of default policies of different
Linux distributors.

• Benefits of the laptop patch?

• USB 2.0 memory stick cost

• Gbit LAN linked vs unplugged

• WLAN seeking

• WLAN associated

• Bluetooth

• KDE vs. Gnome GUI

• LCD: brightness vs power consumption is
there an optimal brightness/power setting?

• Power consumption while suspended to
RAM vs. power consumption to reboot.
What is break-even for length of time sus-
pended vs halt, off, boot?

• Suspend to Disk and wakeup vs. staying
idle

• Suspend to RAM and wakeup vs staying
idle

6 Conclusion

The authors hope that the tools and techniques
shown here will help the Linux community
effectively analyze system power, understand
laptop battery life, and improve Linux power
management.

Appendix A: Scripting Commands

Keystrokes, keystroke conditions (like <Alt>,
<Ctrl>, <Shift>, etc) and delays are scripted in
a scenario file along with other actions (’run
command’, ’wait command’, ’select window’,
’send signal’, etc). The scenario file is passed to
the workload script execution program, strings
are parsed and appropriate actions are executed.

The scenario script is linear, no procedure
defining is (currently) supported. Each string
consists of 5 white space separated fields and

17

begins with command name followed by 4 ar-
guments (State, Count, Delay, String). For each
particular command arguments could have dif-
ferent meanings or be meaningless, though all 4
arguments should present. The following com-
mands are implemented:

Commands to generate user input

DELAY 0 0 Delay 0 Suspends execution for
’Delay’ msecs;

PRESSKEY State Count Delay String Send
’Count’ ’State’ + ’String’ keystrokes with
’Delay’ msec intervals between them
to the window in focus, i.e. command
’PRESSKEY S 2 500 Down’ would gen-
erate 2 ’<Shift> + <Down>’ keystrokes
with 1/2 second intervals. The state values
are:

S for Shift,

A for Alt,

C for Ctrl.

Some keys should be presented as their re-
spective names: Up, Down, Left, Right,
Return, Tab, ESC.

RELEASEKEY 0 0 0 String Similar to
PRESSKEY command, except that the
’Release’ event being sent. It could be
useful since some menu buttons react on
key release, i.e. a pair of ’PRESSKEY 0
0 <Delay> Return’ ’RELEASEKEY 0 0
<Delay> Return’ should be used in this
case.

TYPETEXT State 0 Delay String Types text
from ’String’ with ’Delay’ msecs interval
between keystrokes. If ’State’ is ’F’ then
the text from ’String’ file is typed instead
of ’String’ itself;

ENDSCEN 0 0 0 0 End of scenario. No
strings beyond this one will be executed;

Commands to operate applications

RUNCMD 0 0 0 String Execute command
’String’, exits on completion;

WAITSTARTCMD 0 Count Delay String
Checks ’Count’ times with ’Delay’ msecs
intervals if ’String’ command is started
(total wait time is ’Count’ * ’Delay’
msecs);

WAITFINISHCMD 0 Count Delay String
Checks ’Count’ times with ’Delay’ msecs
intervals if ’String’ command is finished
(total wait time is ’Count’ * ’Delay’
msecs);

Commands to interact with X windows

SETWINDOWID State 0 0 String Makes
window with X window ID located in
’String’ object active. If ’State’ is ’F’ -
’String’ being treated as file, ’E’ or 0 -
environment variable;

SETWINDOW 0 0 0 String Waits for win-
dow with ’String’ title to appear and
makes it active;

FOCUSIN 0 0 0 0 Sets focus to current active
window;

FOCUSOUT 0 0 0 0 Gets focus out of current
active window;

ENDWINDOW 0 0 0 String Waits for win-
dow with ’String’ title to disappear;

SYNCWINDOW 0 0 0 0 Tries to synchronize
current active window;

To reach one particular window SETWIN-
DOW and FOCUSIN commands should be per-
formed.

18

Commands to generate statistics

SENDWORKMSG 0 0 0 String Generate
’WORK’ statistics string in log file with
the ’String’ comment;

SENDIDLEMSG 0 0 0 String Generate
’IDLE’ statistics string in log file with the
’String’ comment;

Note that the harness generates statistics reg-
ularly, so the above commands are intended to
generate strings to mark the beginning and end-
ing of the set of operations (e.g. ’hot-spot’), for
which special measurements are required.

Debugging Commands

TRACEON 0 0 0 0 Enable debug prints;

TRACEOFF 0 0 0 0 Disable debug prints;

References

[ACPI] Hewlett-Packard, Intel, Microsoft,
Phoenix, Toshiba Advanced Configuration &
Power Specification, Revision 3.0a, December
30, 2005. http://www.acpi.info

[Linux/ACPI] Linux/ACPI Project Home page:
http://acpi.sourceforge.net

[MM02] MobileMark R©2002, Business
Applications Performance Corporation,
http://bapco.com, June 4th, 2002, Revision 1.0.

[MM05] MobileMark R©2005, Business
Applications Performance Corporation,
http://bapco.com, May 26th, 2005, Revision
1.0.

BAPCo is a U.S. Registered Trademark of the Busi-
ness Applications Performance Corporation. Mo-
bilMark is a U.S. Registered Trademark of the Busi-
ness Applications Performance Corporation. Linux
is a registered trademark of Linus Torvalds. All
other trademarks mentioned herein are the property
of their respective owners.

19

